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1 Introduction

Wind

No-go zone

Figure 1: Diagram of no-go zone and sail trim
at various headings relative to the wind. The
black line on the boat represents the sail posi-
tion.

This paper develops a method of path plan-
ning for unmanned autonomous sailboats
under shifting and uncertain wind condi-
tions. It consists of two main components:
a method of estimating uncertainty in the
wind, and a path planner that can take this
uncertainty information into account and re-
spect a sailboat’s motion constraints.

Unmanned autonomous sailboats can be
self-sufficient, operating solely on wind and
solar power for long periods, while also re-
maining mobile. This makes them an ideal
alternative to stationary buoys for data col-
lection. For example, unmanned sailboats
can use a wind lidar to measure turbulence
caused by turbines within an offshore wind
farm. This information could increase the
efficiency of wind farms by allowing more op-
timal placement of the turbines. Currently,
these measurements are performed by mete-
orological masts or lidars on fixed platforms
or buoys, all of which are difficult to move to
survey a new location [1]. Operating within wind farms requires the ability to avoid collisions
with wind turbines. Obstacle avoidance for propulsion powered unmanned surface vehicles
has been studied by many researchers [2–6], but sailboats have restricted maneuverability
that requires a different approach.

Implementing obstacle avoidance for sailboats is more difficult than for propulsion pow-
ered vehicles, primarily because sailboats do not have the freedom to move in any direction
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Goal

Figure 2: Overview of the problem. A path planner that only takes into account the current
wind could lead the boat into a environment where slight shifts in wind could force the boat
into a collision (red). Anticipating these shifts allows the planner to pick a path (green) that
is more likely to be safe in the face of uncertain wind.

at a particular time. The motion of a sailboat is limited by the current direction of the wind.
The speed of a sailboat depends primarily on the boat’s heading relative to the apparent
wind. The apparent wind is the wind observed on the moving boat, and is equal to the true
wind vector minus the boat’s velocity. Sailboats must not enter the no-go zone, the range of
headings around the apparent wind direction where the sail loses lift and the boat’s Velocity
Made Good (VMG) begins to decrease. VMG is the rate at which the boat approaches a
target point, and the boat’s heading and sail trim must be continually adjusted to maximize
VMG. On most sailboats, the no-go zone is around 45 degrees to either side of the wind [7, p.
72]. A diagram showing the no-go zone and various sail trim examples can be seen in Figure
1. If the target point is inside the no go zone, the boat cannot travel in a straight line toward
the target. Instead, the boat travels on a heading that maximizes VMG, normally right on
the edge of the no-go zone. After some time, the boat may need to tack, which refers to
the act of crossing the no-go zone, either because the VMG of the new tack is significantly
better or there is an obstacle along the current heading. The boat’s momentum carries it
through the no-go zone, but this maneuver temporarily reduces the boat’s speed, making it
advantageous to reduce the number of tacks performed while traveling toward a goal.

This paper proposes a path planner that takes into account the constraints the no-go
zone places on the sailboat’s motion. To produce the best possible plan, the planner must
know the apparent wind direction at each point along the path. This is impossible, because
the wind, while having a prevailing direction, shifts slightly over time. However, it is possible
to estimate the probability that the wind will blow in a particular direction at a particular
time. This prediction can then be used to guarantee with a certain probability that the boat
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will be outside the no-go zone at all points along the planned path. Figure 2 illustrates an
example of how incorporating wind uncertainty can allow the boat to avoid a collision.

2 Related Work

The research performed for this work can be divided into two main topic areas: estimating the
wind and its uncertainty, and planning a path based on this information. Wind estimation
draws on existing work in the fields of signal processing and statistics. While path planning
for sailboats is not fully studied, there is extensive literature in robotics for many different
systems and environments.

2.1 Forecasting

A number of techniques have been used to develop models for stochastic processes. Kalman
filters are commonly used for state and uncertainty estimation of linear systems perturbed by
Gaussian noise [8]. A standard Kalman filter requires manual selection of the measurement
and process covariance matrices through a characterization process, and the resulting state
covariance matrix depends on the selection of these parameters, not the measurements.
In this application to wind uncertainty estimation, process covariance depends on the wind
conditions, and therefore has to be determined online from the wind measurements. Adaptive
Kalman filter methods have been proposed that use the filter innovation sequence to calculate
both the measurement and process covariance matrices [9, 10].

Autoregressive Moving-Average (ARMA) models are commonly used to generate fore-
casts in economics and other fields. ARMA model parameters are normally selected by
performing maximum likelihood estimation on historical data. This approach is ill-suited
to online adaptation, but some papers have described methods for online ARMA parameter
fitting [11, 12]. For this wind uncertainty modeling application, it is necessary to determine
the confidence interval for the wind state. Given a training dataset, the confidence inter-
val can be calculated from the variance of the model residuals, but the online optimization
methods cited previously do not provide this capability.

Generalized Autoregressive Conditional Heteroskedastic (GARCH) models have been
proposed as a complement to ARMA to model heteroskedastic processes [13]. GARCH
models use ARMA to predict the residuals of a separate mean model (often also ARMA).
Applying a GARCH model to the wind would allow the estimator to adapt to changing
wind conditions, particularly changes in volatility, without being fitted offline. The online
optimization methods discussed earlier could also be applied to the GARCH model, enabling
all aspects of the estimator to be adapted online.

One of the key differences between a Kalman filter and an ARMA approach is the asymp-
totic behavior of the predicted variance. The Kalman filter predicts a variance that grows
linearly and without bound as time increases, while an ARMA model predicts a variance that
approaches the variance of the underlying process (under the assumption that the process is
stationary). An adaptive Kalman filter method was chosen to estimate the wind uncertainty
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in this project and may be more computationally efficient than an ARMA-based method,
but an ARMA-based method could be explored in future work.

2.2 Path Planning

Various projects have tackled the problem of obstacle avoidance and navigation for au-
tonomous sailboats or other types of marine vehicles. Given the unpredictability of the
aquatic environment, many approaches do not incorporate any forward planning and in-
stead rely on reactive local control algorithms that allow the boat to make progress toward
a target while staying away from obstacles. One such technique is to have the boat follow
the gradient of a potential field that repels the boat from obstacles and the no-go zone and
attracts the boat toward the goal [14,15]. This technique is limited by the possibility of the
boat getting stuck in a local minimum of the potential field.

An even simpler technique chooses the optimal heading based on a cost function. The
cost of each heading is determined by a balance between the Velocity Made Good and the
distance to the nearest obstacle. In the case where there are two optimal headings (e.g.,
port and starboard tacks), a cost hysteresis can be used to prevent oscillation [16], or the
opposite tack can be penalized in the cost function [17]. In general, reactive techniques are
limited by their inability to plan ahead and optimize the entire path. To keep the boat safe,
they often need to be conservative.

Path planning algorithms have seen limited use with autonomous sailboats. This may
be due to the difficulty of predicting wind and other environmental conditions. Siegwart
et al. use an A* planner with a sailboat specific cost function [18]. The wind is assumed
to remain constant throughout the path, which is likely an unrealistic assumption. This
is worked around by regenerating the path if the conditions change significantly. Saoud et
al. use a Probabilistic Roadmap (PRM) and Dijkstra’s algorithm [19]. Wind information is
provided by an external forecast. The wind forecast is coarse, but this is acceptable because
the paths spanned distances on the order of 1000 km. Local control was performed using a
reactive potential field controller.

Other work has used partially observable Markov decision processes (POMDP) to solve
robotic planning problems under uncertainty. For example, Ragi and Chong use a POMDP to
perform collision avoidance and target tracking for unmanned aerial vehicles (UAVs) while
accounting for wind disturbances [20]. Rajendran et al. apply POMDPs to a unmanned
surface vehicle planning problem in the presence of other boats and their wakes [21]. Markov
decision processes require discretizing the state space and may be computationally intensive
for large state spaces.

There are many sources of uncertainty while sailing, but no existing work incorporates an
uncertainty model into control or planning for sailboats. There exist algorithms for planning
under uncertainty that have been applied to other robot planning problems. Missiuro and
Roy [22] extend PRM [23] to model uncertain obstacles, while Luders et al. developed chance
constrained rapidly exploring random trees (CC-RRT) [24] and CC-RRT* [25, 26], which
are extensions of the well known RRT [27] and RRT* [28] algorithms respectively. These
algorithms can incorporate uncertainty in localization, motion and obstacle positions and
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plan paths that trade off between risk of collision and path efficiency, maintaining a desired
probability of success.

3 Methods

The proposed method uses a wind uncertainty estimation algorithm to produce a dynamically
tightened no-go zone constraint in the path planner.

3.1 Wind Uncertainty Estimation

Incorporating wind uncertainty into the planning problem first requires a way to estimate
wind characteristics. It is assumed that the boat carries sensors that can measure wind speed
and direction. All models in this paper were developed and tested using a cup anemometer
and wind vane. These sensors have mechanical properties that may make them behave
differently from other types of sensors such as ultrasonic anemometers. This work assumes
the wind speed and direction follow a Gaussian distribution with constant mean and variance
over short time scales. The parameters of this distribution are estimated using an innovation-
based adaptive Kalman filter, based on [10]. The Kalman filter estimates the wind state,
which is a two element vector defined as follows:

ŵt =

(
ŝt
φ̂t

)
(1)

where ŝt ∈ R+ is the wind speed in meters per second and φ̂t ∈ (−π, π] is the wind direction in
radians. The measurement covariance matrix R is assumed constant and determined through
characterization of the anemometer, while the process covariance matrix Qt is adapted using
a moving innovation window. The wind speed and direction are assumed to be Gaussian
random variables with constant mean and variance over the estimation window. This means
the expected value of the next state is the same as the current state, making the state update
matrix A an identity matrix. A more complex model may be derived in the future through
analysis of the wind’s behavior, or based on external forecasts, but lacking such information,
the only assumption that can be made is that the expected wind does not change between
time steps. The measurement matrix H is also an identity matrix because the wind sensor
directly measures the state variables. The filter also has no inputs. This results in the
following simplified filter equations:

P−
t = Pt−1 +Qt (2)

Kt = P−
t (P−

t +R)−1 (3)

vt = zt − ŵt−1 (4)

ŵt = ŵt−1 +Ktvt (5)

Pt = (I −Kt)P
−
t (6)
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At each time step t, the filter first uses (2) to predict the new state covariance P−
t from

the covariance Pt−1 at the previous timestep. The predicted covariance is used to calculate
the Kalman gain Kt in (3). The innovation vt is calculated in (4) as the difference between
the real wind measurement zt and the predicted measurement ŵt−1, which in this case is
the wind state from the previous step. The Kalman gain and innovation are used to update
the state in (5), and the Kalman gain is again used in (6) to produce a corrected covariance
Pt from the predicted covariance.

The process covariance matrix Q is then adapted as follows:

Qt = KtCvtK
T
t (7)

where Cvt is calculated using a moving window of the past N innovations:

Cvt =
1

N

t∑
j=j0

vjv
T
j (8)

where j0 = t − N + 1 is the first index inside the moving estimation window. The window
size must be large enough to capture the full variation of the wind. Larger windows make
the estimator respond more slowly to changes in the wind’s variance, and increase memory
usage.

Measurements from the anemometer are used to update the conditional state and covari-
ance of the filter, producing a constantly updated estimate of the wind conditions. During
planning, the filter uses open loop forward propagation to predict the wind conditions at
each point along the planned path. This causes the predicted covariance to grow linearly
with time.

3.2 Path Planning

Path planning is performed using a variant of the Rapidly-Exploring Random Trees (RRT)
algorithm, which incorporates chance constraints to find a probabilistically safe path given
uncertain wind conditions. The planner attempts to find a sequence of feasible states in
configuration space that allows the boat to reach the goal state. In this case, the boat uses
the SE(2) configuration space, which consists of position in 2D space and heading. The
boat’s state is constrained by obstacles such as land masses or islands, as well as the no-go
zone, which acts like an obstacle in the heading dimension. The location of the no-go zone
depends on the wind direction; therefore, any uncertainty in the wind results in uncertainty
in the edges of the no-go zone. This uncertainty motivates the extension of RRT to include
probabilistic constraints. Other obstacles are assumed to be static with known positions.

The traditional RRT algorithm builds a tree of feasible states, starting from a root at
the robot’s current state [27]. A state is sampled randomly from configuration space and
the nearest existing state in the tree is found. A steering law is used to find a sequence of
controls that steers the robot from the nearest state toward the new state, while respecting
differential constraints on the robot’s motion. If an infeasible state is found along the path,
the last valid state is added to the tree instead of the randomly sampled state. This process
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repeats until the goal state is reached. RRT makes no attempt to minimize the cost of the
path, and therefore often results in paths of low quality.

RRT* extends RRT to include a cost function, which allows the path to be optimized [28].
When a new state is sampled, an attempt is made to form a connection from each of the
k-nearest neighbor states. The connection that results in the lowest cost is kept. Then, the
rewiring step replaces each of the neighbors’ parents with the new state if that would reduce
their cost.

CC-RRT [24] and CC-RRT* [25] extend RRT and RRT*, respectively, to include uncer-
tainty in the robot’s state as well in the obstacle locations. These uncertainties are repre-
sented using Gaussian distributions, and obstacle boundaries are dynamically expanded to
make sure all paths stay below a certain threshold of probability of collision. CC-RRT* adds
a cost function that minimizes the risk of the path.

This work uses a simplified model of sailboat dynamics and control. The boat travels
in a straight line between points along a desired heading. It is assumed that the boat can
turn in place to reach a new heading. This is a reasonable assumption because the distance
required to turn is small compared to the normal length of straight line paths between turns.

The current project ignores any uncertainty in the boat’s state and the position of carte-
sian obstacles. The boat’s state is assumed to be known with low, nearly constant uncer-
tainty, through the use of GPS and an inertial measurement unit (IMU). Obstacle positions
are assumed to be accurately specified by nautical charts or other sources. On the other
hand, the no-go zone has greater uncertainty, and the uncertainty varies depending on wind
conditions.

The proposed planner does not implement the full chance constraint model or risk based
cost function used in CC-RRT*. CC-RRT* places a bound on the estimate of the total
risk along the path, which is neglected in this work. This work only places a bound on
the maximum risk along the path, which Luders et al. [25] state usually results in less
conservative plans. CC-RRT* also includes a cost that minimizes accumulated risk along
the path as well as the maximum cost of any state in the path. These cost terms are not
used in the proposed planner.

At a particular time step t, the wind direction is defined as follows:

φt ∼ N
(
φ̂t, Pφt

)
(9)

where N (â, Pa) denotes a Gaussian random variable with mean â and covariance Pa. The
mean φt and variance Pφt are provided by the adaptive Kalman filter tailored for this appli-
cation, described in Section 3.1.

Let xt be the state vector at time t. This vector consists of three components:

xt =

xxtxyt
xθt

 (10)

where px ∈ R and py ∈ R correspond to the boat’s Cartesian coordinates, while θ ∈ (−π, π]
is the boat’s heading in radians. xt is assumed to be perfectly known, but subject to a set
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of time-varying, probabilistic constraints Xt ⊂ R3 due to the no-go zone. These constraints
are defined as follows:

Xt = X 0 + ct, (11)

ct ∼ N (ĉt, Pct) (12)

where the + operator denotes set translation. X 0 ⊂ R3 is a convex polyhedron represent-
ing the shape of the no-go zone, while ct ∈ R3 represents its time-varying and uncertain
translation.

One of the goals of the path planner is to ensure that the following constraint is satisfied:

P (xt ∈ Xt) ≥ δs, ∀t ∈ Z0,tf (13)

where δs ∈ [0.5, 1] is the desired probability that the boat will not enter the no-go zone and
tf is the final time step of the path.

The no-go zone can be represented as a conjunction of two linear inequalities, one for
each edge:

2∧
i=1

aTi (xt − cit) < 0, ∀t ∈ Z0,tf (14)

where cit is a point nominally on the edge of the ith constraint, assuming no uncertainty.
The specific values of ai and cit that define the no-go zone constraint are as follows:

a1 =

 0
0
−1

 , c1t =

 0
0

φ̂t + θng


a2 =

0
0
1

 , c2t =

 0
0

φ̂t − θng


where φ̂t is the expected wind direction in radians.

As shown by Luders et al. [25], the no-go zone constraints are satisfied with probability
δs at a particular time step t if the following modified constraints are satisfied:

2∨
i=1

aTi (xt − cit) ≥ b̄it ≡
√

2Pv erf−1 (1− 2δs), (15)

Pv =
√
aTi · Pct · ai (16)

where b̄it is the amount of tightening (in radians) that will be applied to a particular side
of the no-go zone and erf−1 () is the inverse error function. Because a1 and a2 are additive
inverses, the same constraint tightening is applied to each side of the no-go zone, so this
tightening can simply be referred to as b̄t.

8



Algorithm 1 Sailboat steering function
Input: x current state, y target state
Output: σ̄ Sequence of states that approach y

1: ∆x ← yx − xx
2: ∆y ← yy − xy
3: θy ← atan2(∆y,∆x)
4: if |θy − φt| >= θng + b̄t then
5: u← θy
6: else
7: us ← φ̂t + θng + b̄t . Starboard tack no-go zone heading

8: up ← φ̂t − θng − b̄t . Port tack no-go zone heading
9: γs ← cos (us − θy)

10: γp ← cos (up − θy)
11: if γs ≥ γp and γs > 0 then
12: u← us
13: else if γp ≥ γs and γp > 0 then
14: u← up
15: else
16: Can’t make any progress toward y

17: while distance to y decreases do
18: Propagate x in heading u
19: Append propagated state to σ̄

To determine the control required to connect a pair of states, the planner uses a steering
function, described in Algorithm 1. In the downwind case, the steering function simply
calculates the heading required to point the boat at the target state (line 5). If the target
state is located in the no-go zone, the steering function points the boat toward the tack
with the highest VMG (line 11), and continues along that tack until it is no longer making
progress toward the goal (line 17) (i.e., the heading toward the target is perpendicular to the
boat’s heading). Propagation (line 18) is performed assuming a constant forward speed v,
ignoring any dependence on the wind for simplicity. At each time step, the boat’s position
is advanced along the commanded heading u by a fixed amount.

The planner cost function is described in Algorithm 2. It comprises a cost for distance
traveled and a cost for turning. The costs are calculated in terms of the time required to
complete the path, using estimates for the boat’s forward speed v in meters per second and
turn rate ω in radians per second. Again, these speeds are assumed to be constant and
independent of the wind speed and direction for simplicity, but future work will look at
optimizing the path by calculating the boat’s speed based on the wind conditions.

Algorithm 2 Sailboat cost function
Input: σ̄t Sequence of states in path from time step 0 to t
Output: f Path cost

1: for i ∈ [1, t] do

2: f ← f +
√

(σ̄i,x − σ̄i−1,x)
2

+ (σ̄i,y − σ̄i−1,y)
2
/v + |σ̄i,θ − σ̄i−1,θ| /ω
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4 Experiments

Anemometer

& Wind Vane

TelemetryTelemetry
radioradio

GPSGPS

PixhawkPixhawk

Figure 3: Autonomous sailboat mod-
ified for this project (top) and elec-
tronics mounted under hatch (bot-
tom).

Experiments were conducted to validate the effective-
ness of the proposed method both as a basic path
planner for sailboats, as well as to assess whether
incorporating wind uncertainty into the no-go zone
improves navigation safety. The planner was tested
offline, and was also integrated into a simulator.

To collect wind data and perform experiments,
an off-the-shelf 1 meter Horizon Hobby Ragazza re-
mote control sailboat [29] (Figure 3) was modified to
be autonomously controlled, using a Pixhawk flight
controller [30] running the open source ArduPilot
firmware [31]. ArduPilot has support for basic reac-
tive control of sailboats, as well as data logging from
its sensors. The Pixhawk contains many sensors, in-
cluding a gyroscope, accelerometer, and magnetome-
ter. A GPS receiver was connected to the Pixhawk to
provide position information, and a telemetry radio
was used to communicate with a computer on shore.
These components were mounted to the bottom of the
hatch cover, as shown in Figure 3 (bottom). As this
boat was only used for short duration tests, this was
found to be sufficient to keep the components out of
contact with water. In this paper, the boat was only
used for wind data collection, but future work will
perform real world tests of the proposed path plan-
ner.

The sail is controlled with a winch servo that
tightens or slackens both the jib and main sheets si-
multaneously. The rudder is actuated with a stan-
dard hobby servo. The boat was fitted with a cup
anemometer and wind vane manufactured by Davis
Instruments [32], mounted on a pole extending for-
ward in front of the jib, about 1 meter above the deck
(see Figure 3 (top)). The area of the wind vane was
increased to make it more responsive in low winds.
These sensors have significant mechanical dynamics that affect their measurements. For ex-
ample, the friction in the wind vane’s bearing can cause it to stick in low winds, coupling it
with the boat’s motion. The anemometer’s inertia causes under- and over-speeding, resulting
in a measurement delay when the wind speed changes.
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Figure 4: Histograms of wind speed and direction. The wind direction appears normally
distributed, as does the wind speed except near zero.

4.1 Wind Uncertainty Estimation

The assumption of the normal distribution of the wind direction was validated using data
collected from the sailboat. Figure 4 shows a histogram of wind speed and direction collected
over an approximately one hour period. The wind direction is normalized around the mean
for visualization purposes, and appears roughly normally distributed. The wind speed his-
togram only appears roughly normal at high speeds, due to limitations of the anemometer.
The anemometer is unable to measure speeds below 1 m/ sec, causing the spike in measure-
ments near zero. A low pass filter was applied to the data as it was collected, causing some
readings to appear between 0 and 1 m/ sec. This has no effect on the path planner, which
does not use wind speed information.

The fact that the distribution appears Gaussian does not necessarily imply that the wind
is a Gaussian random variable. Samples may not be independent with respect to time, which
can be seen on an autocorrelation plot, shown in Figure 5. As may be expected of a physical
process, this plot indicates that each sample has some dependence on previous samples,
which motivates potential future wind estimator design using models that can account for
this dependence, such as ARMA.

Despite the evidence that wind direction is not a true Gaussian random variable, the
Kalman filter based wind estimator is successfully able to identify changes in the variance of
the wind. The adaptive Kalman filter can account for the autocorrelation by using a moving
window that is larger than the time window that exhibits significant autocorrelation.
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Figure 5: Autocorrelation plot of wind direction. The decaying autocorrelation indicates
that samples of the wind direction are not independent.

4.2 Path Planning

The planner was implemented using the Open Motion Planning Library (OMPL) [33]. This
library provided a framework for developing a sampling based motion planner.

The sailboat was used to collect samples of wind on a lake under different wind conditions.
A test setup was developed that used samples of wind data collected by the boat to initialize
the wind estimator, and then the planner was used offline to solve various planning problems
with different parameters. Figure 6 shows example state trees that were generated by the
planner operating in an environment containing four polygonal obstacles. The planner starts
at the cyan vertex and attempts to find a path to the green vertex. The lowest cost path
found by the proposed algorithm is highlighted in red. Figure 6a shows an upwind path,
where the boat tacks a number of times to reach the goal. Initially the no-go zone is 90
degrees wide, but grows to 110 degrees near the end of the plan as the uncertainty increases.
If the safety probability δs is increased by a relatively small amount, from 60% to 66%, the
planner becomes unable to find a solution because the no-go zone grows larger than 180
degrees, as shown in Figure 6b. If the start and goal points are swapped, as shown in Figure
6c, the no-go zone constraint no longer affects the path, as the boat is travelling downwind.

The planner was then integrated with ArduPilot to test its effectiveness online in simu-
lated or real environments. ArduPilot provides a simple sailboat simulator that has a nearly
identical programming interface to a real ArduPilot based boat. Obstacle information can
be loaded using a well-known text (WKT) file, a common format for representing geographic
data. Geographic points are converted into a local coordinate system using a equirectan-
gular projection centered around the boat’s starting position, and all planning takes place
assuming Euclidean geometry.
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90◦

110◦

(a) The goal is upwind from the start, requir-
ing the boat to tack. The no-go zone grows
as the wind becomes less certain.

(b) An attempt to plan an upwind path, but
the required safety probability was set to a
large value, causing the tightened no-go zone
to become larger than 180 degrees, making
upwind progress impossible.

(c) The goal and start are reversed, resulting
in a simpler downwind path.

(d) The safety probability was increased, but
this had no effect on the downwind path.

Figure 6: State trees generated by the planner under different conditions. The start state is
highlighted in cyan, while the goal is in green. The best path is shown in red.
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The wind estimator is continually updated using data provided by the simulator or a real
sensor. In the simulator, the wind direction is generated using a first order autoregressive
model (AR(1)) [34, p. 53], represented as follows:

φ̂t = φ̂t−1 + ∆t

(
−ρφ̂t−1 + wt

)
, (17)

s.t. ρ = 0.036 Hz, wt ∼ N (0 rad/ sec, 0.087 rad/ sec)

where ∆t is the simulation time step. This representation was chosen because the parameters
have a physically relevant units and were independent of the chosen time step. (17) can easily
be shown to be equivalent to the standard AR(1) model equation.

The AR(1) model provided a good balance between model complexity and correspondence
with empirical wind data. The model parameters were fitted to a wind dataset collected by
the RC sailboat by maximizing the log-likelihood using a Kalman filter [34, p. 372]

The planner runs for a fixed period of time, and then commands the boat to begin fol-
lowing the calculated plan. The planning time was determined experimentally, by observing
how long it took before the rate of solution optimization tailed off. A planning time of 10
seconds was used for all simulator experiments. ArduPilot uses an L1 navigation controller
to travel between the points on the path [35]. This controller causes the boat to travel toward
a point on the line between the previous and next waypoint. The point is located a certain
distance ahead of the boat, which causes the boat to move toward the next waypoint while
also reducing cross-track error. Each time the boat reaches a waypoint, the path is gen-
erated again, starting from the next waypoint and incorporating new wind measurements.
This compensates for the conservative nature of the planner. Even if the wind was very
uncertain near the goal when the planner first ran, it will become more certain as the boat
approaches the goal. Re-planning allows this increased certainty to be used to create better,
less conservative paths.

Preliminary experiments have been performed using the autonomous sailboat. On the
water tests were completed to tune its waypoint navigation and control algorithms, and full
validation of the path planner will be part of future work.
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Wind

(a) The wind is positioned
such that the boat can just
barely traverse the right hand
path without tacking for a sig-
nificant portion of the path.

Wind

(b) Increasing the wind noise
tightens the no-go zone con-
straint, making the left hand
path have a lower cost.

Wind

(c) In the downwind case,
the boat plans a simple route
along the right hand path.

Figure 7: Paths followed by the boat in simulation under different conditions. The start
point is highlighted in cyan, while the goal is in green. As each waypoint was reached the
path ahead was re-planned to take into account new wind data and reduce uncertainty. This
environment offers two distinct paths to the goal.
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5 Discussion

This paper successfully develops a novel sampling based planner for sailboats. This planner
enables safe and efficient navigation around static obstacles while accounting for the most
important constraint on sailboat motion, the no-go zone. This work also introduces a method
for increasing the probability of successful path traversal by estimating the uncertainty in the
wind direction and using this information to prevent the boat from becoming stuck in irons,
potentially unable to maneuver away from obstacles. In realistic scenarios on open water, a
planner that neglects wind uncertainty may succeed; however, there exist certain scenarios
such as navigation in tight spaces or around dynamic obstacles where the proposed planner
may result in significantly safer behavior. Such examples have yet to be demonstrated in
simulation, but this may be due in part to the simplicity of the simulator. Analysis of more
complex scenarios in simulation and the real world will be performed in future work.

Current online planning experiments use continual re-planning to produce less conserva-
tive paths over time as more wind information becomes available. Re-planning allows even
a non-uncertainty aware planner to respond to changes in the wind, but is computationally
expensive. Incorporating wind uncertainty may allow re-planning to occur less often, only
when the wind uncertainty changes significantly, resulting in increased efficiency.

It may be possible to improve the planner’s performance and stability by using a different
wind estimator. The asymptotic behavior of the Kalman filter’s open loop covariance pre-
diction results in unstable planning results that depend greatly on the chosen parameters.
Slight changes in the minimum allowable safety probability can mean the difference between
the planner finding a solution, or failing because the tightened no-go zone grew too large.
A wind estimator based on an ARMA model would certainly result in more stable results
because the predicted uncertainty estimate approaches a constant as time increases, rather
than increasing linearly without bound as in the case of the Kalman filter. An additional im-
provement in performance may be achieved in the future by implementing the full CC-RRT*
algorithm, including the bound on the accumulated risk of the path and the risk based cost
function.

The CC-RRT* based planner offers a useful foundation for future avenues of research,
including incorporating dynamic obstacles, such as other boats. CC-RRT* may provide a
framework for incorporating the uncertain motion of these obstacles into the planner, and
allow the sailboat to navigate in a manner that minimizes the risk of collision.
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