Voice Recorder

Ben Wolsieffer and Afia Semin
ENGS 31-18X

Abstract

This project is a voice recorder that captures audio from an onboard microphone and
plays it back through a speaker. Audio data is stored on an SD card, allowing for long recording
times and long-term storage. It is also possible to write an audio file to the SD card from a
computer and play it back using the voice recorder. The recorder was implemented on a Xilinx
Artix-7 FPGA using the Digilent Basys 3 development board, as a well as a variety of Digilent

Pmods.

Table of Contents

1. Introduction

2. Design solution
2.1. Specifications
2.2. Operating Instructions
2.3. Theory of Operation
2.4. Construction and Debugging

3. Evaluation

4. Conclusions

5. Acknowledgments

6. References

Appendix A - Annotated front panel
Appendix B - Block diagrams
Appendix C - State diagrams'
Appendix D - Parts list

Appendix E - VHDL code and constraints
Appendix F - Resource utilization
Appendix G - Residual warnings
Appendix H - Memory map
Appendix I - Simulation waveforms'

Appendix J - Computer program

' To see enlarged versions of the diagrams in this appendix, click on the images.

wn A~ A

10
11
12
12
13
14
15
22
27
28
98
100
101
102
106

1. Introduction

The primary objective of this project was to create a digital voice recorder that was
capable of recording audio from a microphone, storing it and then playing it back through a
speaker. An additional goal after accomplishing the primary goal was to store the audio on an SD

card, allowing much longer recording times.

2. Design solution

2.1. Specifications

This system is a voice recorder that records audio from an onboard microphone and
stores it onto an SD card. It is also capable of playing back audio from the SD card. The voice
recorder uses the onboard LEDs and pushbuttons of the Basys 3 for its user interface. It uses a
Pmod MIC3 connected to port JA for audio input, and a Pmod DA2 connected to port JXADC to
generate an analog audio signal. The analog signal is passed through an adapter board to a Pmod
AMP2 audio amplifier, which drives a speaker. Finally, an SD card socket (Pmod SD) is
attached to port JB. A photograph of this setup is shown in Appendix A. The connections and

internal pin mappings between the FPGA and Basys 3 ports are shown in Figure B1.

2.2. Operating Instructions

To operate the system, the Pmods must be connected as described in the specifications

section and shown in the front panel diagram (Appendix A). An SD card must be inserted in the

socket before the system is powered on. If the SD card is removed while the system is on, the
card must be reinserted and the system must be restarted before it can be used. To begin a
recording, press the record button. To stop the recording, press the record button again. The
recording can be played back at a chosen speed using any of the play buttons. The recording will
play until it is finished, or the same button is pressed again. The row of lights along the bottom
of the board allows the user to determine the current state of the system. The SD card driver
respects the write protect switch on the SD card. If the record LED does not turn on after the

record button is pressed, make sure the write protect switch is in the unlocked position.

2.3. Theory of Operation

The main components of the system are the Ul controller, the audio controller, and the
SD card driver, as well hardware interface components for the A/D and D/A convertors (their
connections are shown in Figure B2).

Audio is recorded with a Pmod MIC3, which uses a Texas Instruments ADCS7476 A/D
convertor, and audio is played using a Pmod DA2 with a Texas Instruments DAC121S101 D/A
convertor. The driver for the Pmod MIC3 is identical to the one used in the last two labs, except
for the addition of a done signal that is asserted as the last bit is shifted in. The Pmod DA2 driver
is similar to the A/D driver, except it is a parallel to serial shift register instead of a serial to
parallel shift register (see Figure B3 and C1).

The A/D and D/A drivers are connected by the audio controller. The audio controller is a
finite state machine (described in Figure C2) that outputs a take sample pulse at the audio sample
rate (specified by the UI controller). This signal is continuously passed to the A/D driver, even

during playback, but it is gated by an enable signal before being passed to the D/A driver to

prevent unwanted noises from being played by the D/A while recording. The audio controller is
also responsible for writing the A/D and D/A data to and from the RAM buffer. It receives the
current position in the RAM buffer from the SD card driver and uses it to decide whether there is
enough data in the circular buffer to continue playback, and also whether the buffer is full while
recording (see Figure B4 for details of the bounds checking). The circular buffer and bounds
checking are implemented using a monotonically increasing counter that represents the number
of samples that have been played or recorded. The SD driver has its own version of this counter,
which keeps track of how many samples it has read or written. The actual position in the RAM is
the sample index modulo the RAM size. The RAM size is configured to be a power of two (in
this case, 131,072 or 2'"), which turns the modulus operation into an efficient bit mask. The
sample index is used in the comparison operations, which makes it unnecessary to explicitly
determine when the circular buffer wraps.

Data in the circular buffer is transferred to an SD card for permanent storage. SD cards
have two modes of communication, a native high-performance protocol using four data lines,
and a simpler SPI mode. Communication is symmetrical, with both the master and slave (SD
card) shifting out data on the falling edge of the clock and latching data on the rising edge. The
master initiates all communication.

In this design, the SD card driver has the minimum possible interaction with the audio
components of the system. The SD driver consists of three levels of components, starting at the
lowest level with a pair of components that constantly send and receive from the SPI bus in 8-bit
increments. The SD protocol operates on the byte level, so the smallest unit the higher-level

components of the driver will have to work with is one byte (8 bits). The sending and receiving

components operate as parallel to serial and serial to parallel shift register convertors,
respectively. These components are always shifting, and they assert a signal as the last bit is
being shifted out or in. In addition, the sending component has a signal that causes an input to be
stored into the parallel register. When there is no data to send, the bus is held high (ones are
shifted out), which indicates that it is idle. The SD card also holds its master-out-slave-in
(MOSI) line high when idle, making it possible to detect traffic on the bus by waiting for a
received byte that is not equal to OXFF (the first byte of any transfer is guaranteed to have at least
one zero). The sending component is also responsible for asserting chip select (CS) when the
first data is sent. This is done at such a low level because CS serves as the framing signal for the
data, and must occur as the first bit is sent. The higher-level components of the driver do not
operate at the bit level, making it difficult for them to accomplish this precise timing. In this
implementation, the CS signal is never deasserted, because the SD cards tested were able to
maintain their framing without it. There is anecdotal evidence (web comments) that some cards
require CS to be deasserted and asserted between commands. The detailed design of these
components is shown in Figures B6 and B7.

Above the sending and receiving components is the command driver, which executes
commands and returns their responses. It is implemented as a finite state machine (FSM), fully
described in Figure C5. When a start signal is asserted, the state machines registers a command
index and argument, sends it to the card, waits for a response and then asserts a done signal.
Most commands have a short response ranging from 1 byte to 5 bytes. The first byte always has
the same format, and indicates whether an error occurred. Certain commands, in particular those

that read from the card, send a second response that contains the data that was read. While the

driver returns the first response as a 32 bit signal, the second response is returned as a single byte
and an index that increments as the response is read. This makes it easy to directly map this data
into RAM. Data writes are performed using a similar mechanism in the opposite direction, with
the master sending a data block after receiving the first response from the card.

The highest level of the SD card driver manages the sequencing of commands during
initialization, as well as the transfer of data between the audio RAM and the SD command
driver. The SD card driver is also an FSM, with many states named after SD command
mnemonics (described in Figure C5, the state diagram for the SD card driver, and B8, which is
an abbreviated version of the block diagram for the command controller and the card driver; a
more complete block diagram for this part of the project is not available due to complexity and
time constraints). The SD card standard has gone through several revisions, and therefore a fully
compatible driver must perform different commands and checks depending on which version of
the standard a particular card implements. To make implementation simpler, only SD version 2
and greater cards were supported. In addition, only SDHC and SDXC cards (which use sector
addressing) were available to test, so support for standard capacity SD cards (which use byte
addressing) is only theoretical. Data transfers are performed using single block read and write
commands. While using multiblock data transfer commands would have been more efficient,
there was not sufficient time to implement them. This is particularly true for writing, as a naive
single block writing algorithm suffers from the FLASH write amplification issue. FLASH
memory must be erased before it can be written, and the minimum size that can be erased is
much larger than the minimum size that can be written. Therefore, to change a single byte, it is

necessary to buffer the entire erase block, erase it and then write the data back with the single

byte changed. This reduces performance and can cause premature failure of the FLASH device
because FLASH can only withstand a limited number of erase cycles. Multiblock writes work
around this problem by making it possible for the SD card firmware to buffer many writes before
erasing a block. A possibly simpler solution is also available, because the SD protocol allows
sectors to be explicitly erased. In the case of the voice recorder, a new recording overwrites an
old recording, making it possible to preemptively erase a large block ahead of the recording. The
SD driver implements these commands, erasing 4 MiB blocks ahead of the current recording
position. It is possible to determine the exact erase block size of a particular card, but this was
not done due to time constraints.

The driver implements minimal error checking and recovery. Error codes or unexpected
values in command responses are detected, but no attempt is made to recover. The driver simply
stops in the case of errors. Timeouts are not implemented, meaning that if a card is disconnected
in the middle of a command, the driver will hang. The SD protocol optionally uses a cyclic
redundancy check (CRC) to verify the integrity of commands and data, but this is not
implemented by this driver beyond the first few initialization commands that require it. Rather
than calculating a CRC, hardcoded values are used because the contents of the commands are
fixed.

The SD driver interacts with the audio components through the block RAM as well as an
index that indicates which sample of the audio file is currently being recorded or played. The SD
driver only writes during recording when there are at least 512 bytes (one sector) buffered in the
RAM, and only reads during playback when there are at least 512 bytes free in the circular

buffer.

10

The high-level state of the system is controlled by the user interface (UI) controller. It
takes the debounced monopulsed buttons as inputs and produces record and play signals as
outputs. In addition, it has two inputs from the audio controller and SD driver that indicate that
they are done (either after the recording or after playback was stopped manually, or the end of
the file was reached). If the UI controller is in the idle state and one of the buttons is pressed, it
transitions to the corresponding state, and asserts either the play or record output. It remains in
that state until the same button is pressed again, or either the audio controller or SD controller
indicates that it is done. In either case, it waits for both done signals to be asserted before
returning to the idle state. The audio controller and SD driver also wait for their counterparts’
done signals, which synchronizes the three major components of the system. To implement the
fast and slow play capabilities, the UI controller outputs a signal that controls the speed of the
take sample pulse. The full state diagram and block diagram can be seen in Figures C3 and BS,

respectively.

2.4. Construction and Debugging

The first components that were designed and implemented were the drivers for the A/D
and D/A convertors. The A/D convertor driver was already written for the last few labs, so it was
simply modified to include a done signal that is asserted as the last bit is shifted in. Once these
components were written and tested in simulation (see Appendix I for simulation waveforms), a
simple demo system was created that simply forwarded data from the A/D to the D/A. This
worked on the first try, except for an issue with a different pin mapping between the Pmod AD1
and the Pmod MIC3. The next step was to implement the system that would accomplish the first

design goal. This was the design presented at the design review. This system worked with few

11

issues, other than a strange problem where the Pmod ports of the Basys 3 seemingly stopped
working, although the buttons and LEDs still worked. This problem disappeared the following
day and never occurred again. Once this part of the project was working, design was started on
the SD card driver. This began with the SD sending component, which was tested in simulation
(Appendix I) and then with a simple test harness that sent a single command. Debugging this
system took a significant amount of time because it was not known that data was supposed to be
clocked out on the falling edge. Once this was solved, the component was turned into the SD
command controller, which allowed a higher level driver to execute a series of commands to
initialize the card. In this first phase, testing was done without any connection to the audio
system. Once it was possible to fully initialize the SD card, work was begun to integrate it into
the audio system. First, reading was implemented. Reading was deemed slightly easier than
writing because there was no need to worry about erasing. In order to have something to read, a
Python program was written to allow audio files to be written to an SD card in the format
expected by the voice recorder (see Appendix J). The most difficult part of getting this to work
was making sure the audio controller and SD driver stayed within the correct bounds of the

buffer. Lastly, writing and erasing were implemented, which had similar issues as reading.

3. Evaluation

Although the design goals were satisfied, there are a number of features that would
almost certainly be necessary for this system to have any real applications or practicality. It is
only capable of recording a single audio file, and new recording overwrites the previous
recordings. A practical voice recorder needs to be able to store multiple recordings, ideally in a

file system that is interoperable with other systems. The ability to store multiple recordings

12

would also likely require a better user interface that provides more feedback to the user than just
a few LEDs. It is not possible to swap SD cards without restarting the system, which is
inconvenient. Many of the more complicated features are unsuited to an FPGA implementation,

and would be much simpler to implement using a microprocessor.

4. Conclusions

The final design accomplished the initial goal of being able to record and play audio from
the onboard RAM, as well as the secondary goal of writing that data to an SD card. The primary
goal was easily achievable with the skills and resources obtained in ENGS 31. The SD card
portion of the project was more difficult and required significant research outside of what was
taught in class (How to Use MMC/SDC, 2018; SD Specifications, 2017). This meant that the
TAs had limited ability to help with this part of the design. Students who want to implement an
SD card driver in the future should be prepared to perform independent research and read

technical specifications.

5. Acknowledgments

We gained the skills to implement this project from Professor Hansen’s lectures and the
laboratory exercises. In addition, our design process was facilitated in consultation with our
learning fellow, Ella Ryan. The audio controller and the modifications to the A/D driver were
done by Ben Wolsieffer. The D/A driver and the UI controller were written by Afia Semin. The
SD card driver design and implementation were done by Ben Wolsieffer. The SD card portion of

the project was outside the specifications as initially proposed at the design review.

6. References

"How to Use MMC/SDC." March 13, 2018. Accessed August 16, 2018.

http://elm-chan.org/docs/mmc/mmc_e.html.

“SD Specifications Part 1: Physical Layer Simplified Specification." April 10, 2017. SD

Association. Accessed August 12, 2018. https://www.sdcard.org/downloads/pls/.

13

14

Appendix A - Annotated front panel

Audio Amplifier

Speaker

Microphone and
A/D Convertor

Play fast LED

Play LED

Appendix B - Block diagrams

Convertor (Pmod
MIC3)

Microphone and A/D

[€—ad_spi_sclk—
—ad_spi_sdata—»|

[€—ad_spi_cs—

play_btn—b
recordfbln—)
Lplay,btn—)
sfplayfbm—)

Figure B1. Hardware Block Diagram

15

JXADC1[—da_spi_sclk—>

JXADC2—da_spi_sdata—»|

D/A Convertor (Pmod

Audio Amplifier
(Pmod AMP2)

DA2)

JXADC4[—da_spi_cs—>
JB1————sd_spi_sck——>
JB2[——sd_spi_mosi———>

JB3[€———sd_spi_miso—

JB4 sd_spi_cs

JBO«€ sd_cd

JB10j———sd_wp

SD Card Socket (Pmod SD)

record_led play_led f_play_led s_play_led

https://www.benwolsieffer.com/engs31/Hardware%20Diagram.svg

T I 1 L 1L
o @ = c = o o
2 4 > >! g = ! >
o > © o o & E)
| [T v v ¥ ¥
Ul Controller
A T
audio_done ree sd_done
play

rindex_audio»
Faudio_done |

Audio controller

€<—sd_done—
[€—index_sd—]

| b £

2 =3 douta

o E dina

£ e o

g 8 ® @ addra

o B o 2 wea

© | >

£ J = < lLda data—

S © © | =

| °, g

2 o

- @

v I \ 4 L 4 \ 4

A/D driver D/A driver

= B I

® ® 8 & T Y

O I = B ._\ w| a

[« tﬂ‘ [=1 a -5)

% a 9 hoe o

® 2 % 3 g P

B Vi
v v

SD driver

—sd_spi_sclk—>
—sd_spi_mosi—>
€—sd_spi_miso-®
—sd_spi_cs—>
€—sd wp—=*
€—sd_cd—=

€<—web

€«—addrb
[€—dinb

doutb——>|

Block RAM

Figure B2. Top level block diagram

16

https://www.benwolsieffer.com/engs31/Top%20Level%20Block%20Diagram.svg

17

Audio Controller

Shift Register

A A A
= g
@ 7)) —_ -
7] |
ol = ol 3
2 = = I
| h © —
b= = ©
c c o 7]
] T
a
1= A 4

Shift Counter
A
o1 2| o
£ |G| F
= |
[[

A A 4

da_data

<
<

sclk

ple

tick_sam

<

D/A Controller

© >

= = |

— - al

5 B 8
A Y A 4

D/A

Figure B3. D/A driver block diagram

take_sample

ram_din

ad_data

index_sd

18

ad_take_sample

D—< da_new_sample

da_data

ram_dout

/_. ram_addr
16-0

32
32
0 ——00
32
01 Q
32 —10 en
152 +
)
RAM_SIZE —] 32
+ 32
32
INDEX_MAX
INDEX_MAX— | >
RAM_SIZE—
1 -4 + =
32 32 >=
INDEX_MAX—] =

last_index empty full

State Machine

da_en index_sel

Figure B4. Audio controller block diagram

Audio Controller

A A A
=
el i
[s] c =
S = £
g 4 8 g g
S| @ @ a A
® 3
Y Y
Ul Controller
A A
° £
3 B| 3 E| 5 £l B g‘
g Al & &) o S & z
@ o a a b 5 a =
[=% m\ | = Q ml o
Y A 4 Y
Ul (Buttons and LED's)
Figure B5. Ul controller block diagram
8
L shit | & | S
left 8 8 Spl_mosi
. D Q /7
data D Q 1
A
A en
0 — Q spi_cs
D Q
A en
A__en |
new_data D
7t00
counter
TC done
A

Figure B6. SD send component logic diagram

19

Shift
spi_miso ——— left

7t00
counter

A

en

8
————<— data

TC

Figure B7. SD receive component logic diagram

new_data

20

21

SD Command
SD Recv SD Send
sd_spi_miso sd_spi_mosi
———esd_spi_cs
recv_data send_data
I
ocr
—1D Q res_r1 cmd J
D QF— D Q
5 3
o o
53
csd res_datal cmd_arg 1;‘ 3‘
LD a b ap -0 Q' 3 £
ram_dout
ram_din
State Machine
read_dest
State Machine

Figure BS8. Simplified block diagram for SD driver and command controller. This diagram shows
basic data flows, but is missing many of the complicated implementation details.

Appendix C - State diagrams?

tick_sample =0

tick_sample = 1

Figure C1. D/A driver state diagram

2To see enlarged versions of these diagrams, click on the image.

TC

22

https://www.benwolsieffer.com/engs31/D_A%20Controller%20State%20Machine.svg

All outputs are zero if not specified.

play=1andrec=0

play =1 and
((empty =1 and
sd_done =0) or

PLAY
(empty =0 and .
take_sample = 0)) index_sel = 01
da_en=1

play = 1 and
empty = 0 and
take_sample = 1

INDEX_INC

index_sel =10

play =0or
(empty =1 and
sd_done = 1)

play =0 and record =0

sd_done =1
rec=0or
sd_done =1

RECORD
index_sel =01

=0

AD_WAIT
index_sel =01

last_index

WRITE
ram_wr_en =1
index_sel =10
rec_end_en=1

last_index =1

Figure C2. Audio controller state diagram

23

rec =1 and
sd_done =1 and
(take_sample =0
or full =1)

rec = 1 and sd_done =1 and
take_sample =1 and full =0

ad_data_ready =0

ad_data_ready = 1

https://www.benwolsieffer.com/engs31/Audio%20Controller%20State%20Machine.svg

All outputs are zero if not specified.

audio_done =0
and sd_done =0
and rec_btn =0

RECORD
take_sample_div = 227
rec_out=1
rec_led =1

audio_done =1
and sd_done =1

audio_done =1
and sd_done =

(audio_done =0
or sd_done = 0)
and rec_btn =1

rec_btn =0 and
s_play_btn =1

SLOW_PLAY
take_sample_div = 600
play_out =1
s_play_led =1

audio_done =0
and sd_done =0
and s_play_btn =0

(audio_done =0
or sd_done = 0)
and s_play_btn=1

rec_btn =0 and
s_play_btn =0 and
f_play_btn=0
play_btn=0

rec_btn =0 and

f_play_btn =0
play_btn =1

s_play_btn =0 and

audio_done =0
and sd_done =0
and play_btn =0

PLAY
take_sample_div = 227
play_out =1
play_led =1

rec_btn = 0 and
s_play_btn =0 and
f_play_btn =0

audio_done =1
and sd_done =1

(audio_done =0
or sd_done = Q)
and f_play_btn =1

take_sample_div =114

DONE_WAIT

audio_done =0
or sd_done =0

Figure C3. Ul controller state diagram

audio_done =1
and sd_done =1

audio_done =1
and sd_done =1

(audio_done =0
or sd_done =0)
and play_btn =1

FAST_PLAY

play_out = 1
f_play_led =1

audio_done =0
and sd_done =0
and f_play_btn =0

24

https://www.benwolsieffer.com/engs31/UI%20Controller%20State%20Machine.svg

All outputs are zero if not specified. cmd_start=0

IDLE
cmd_index_preset =1
cmd_reg_en =1

send_done =1
cmd_start = 1

recv_idle =1

recv_idle =0 ,

recv_done =0

h

res_done =0
=} recv_done =1
I
£
g
E RES_DATA_LOAD
il DATA_TOKEN_WAIT res_index_inc = 1 DATA_TOKEN_LOAD
g data_index_reset =1 res_done = 1 res data en~1 / Fes_done=1
9| and cmd_type =00 - and cmd_type = 01
[}
3 data_token_match = 1
S 8
(] la
(]
5 DATA_READ_WAIT DATA_WRITE_WAIT §
3 g 7 i
3 53 res_done = 1 . g’
= = andcmd_type=10 7
recv_done = 1 e 2| send_done=1
o g
(2]
1 £
o o
DATA_READ_LOAD DATA_WRITE_LOAD
data_index_tc =1 S
h 4 4
o Sp
o &g
e YA
B BUSY_WAIT < DATA_RES_WAIT @? /
3‘ data_res_match =1 @ @G\
[= §b

recv_idle =1

data_res_match =0
and recv_idle =1

DONE
done =1

Figure C4. SD command controller state diagram

25

. &

=

CMD_LOAD Oy

cmd_index_inc = 1 g

sd_new _data =1 /Ccmd_done =0 3

1]

o

cmd_done =1

RES_WAIT ERROR

res_rl_en=1 - > error = 1
res_index_preset = 1 recv_idle = 0 and res_error = 1 Qd_end =1

https://www.benwolsieffer.com/engs31/SD%20Command%20State%20Machine.svg

26

All outputs are zero if not specified.

sd_init=0
sd_init=1
Every SD command state
has an implicit transition GO_IDLE_STATE _
1o the ERROR state when cmd_start = 1 jomd_end =0
cmd_error = 1)
: cmd_end = 1
omd_end = 1 SEND_IF_COND
ERROR and pattern_match = 0 cmd_start =1 omd_end =0
error = 1 -
No error recovery is implemented. cmd_end = 1
v o and pattern_match = 1

APP_CMD
cmd_start =1 emd_end =0
cmd =55

SD_SEND_OP_COND
cmd_start =1
cmd =41
cmd_arg = 0x40000000.

cmd_end = 1
and idle_state = 1

cmd_end =0

emd_end =1
and idle_state = 0|

READ_OCR
cmd_start =1

cmd =58
ocr_reg_en=1

SET_BLOCKLEN
cmd = 16
cmd_arg = 0x200

cmd_end =0

cmd_end = 1
and he_xc = 1

SEND_CSD
cmd_start = 1
cmd=9
read_dest =01

cmd_end =0
buffer_avalilable = 0
and almost_full =0
andsd_wp=0

play =0 and e =0 jomd_end =1 buffer_available = 1
and erase_blk = 1
and almost_full =0
andsd wp=0

READ_LENGTH
cmd_start = 1
cmd =17
read_dest = 10

RECORD

cmd_end =0
sector_reset=1

Play 1
buffer_available = 1 and erase_blk = 0
and almost_full =0 and sd_wp =0

cmd_end =1 audio_done =1

play =1 almost_full =1 or
and almost_eof = 0 WRITE_SAMPLES ERASE_WR_BLK
= START_ADDR
and almost_full = 0 cmd_start = 1 d start= 1 omd end =0
and ram_available = 1 emd = 24 Cr];n?dsfai —end =
cmd_arg_src =01 omd_arg_src = 10,
play = 1 and almost_eof =0
and almost_full =0 cmd_end =1 _
d ram_available =1 emd_end =1
READ_SAMPLES
cmd_start =1 RECORD_SECTOR_INC ERASE_WR_BLK
cmd =17 sector_inc =1 _END_ADDR
emd_arg_src = 01 cmd_start = 1 cmd_end =0
cmd = 33
cmd_arg_src = 11
%
>
(2} cmd_end =1
WRITE_LENGTH
PLAY_SECTOR_INC cmd_start =1
sector_inc =1 cmd = 24
read_dest =10 ERASE
cmd_start = 1 cmd_end =0

cmd = 38

cmd_end =0

Figure C5. SD driver state diagram

https://www.benwolsieffer.com/engs31/SD%20Driver%20State%20Machine.svg

27

Appendix D - Parts list

Quantity | Name Description

1 Basys 3 Xilinx Artix-7 FPGA development board

1 Pmod MIC3 | MEMS Microphone and 12-bit Analog-to-Digital convertor
1 Pmod DA2 2 channel 12-bit Digital-to-Analog converter

1 Pmod AMP2 | Low power audio amplifier

1 Pmod SD Full-sized SD Card Slot

1 Speaker Speaker with male 3.5 mm jack

28

Appendix E - VHDL code and constraints

voice_recorder.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer, Afia Semin

-- Create Date: ©8/12/2018 08:28:03 PM

-- Design Name:

-- Module Name: voice_recorder - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Basys 3

-- Tool Versions:

-- Description: Top Llevel file for the voice recorder

-- Dependencies:

-- Revision:
-- Revision .01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity voice_recorder is
port(mclk: in std logic;

f _play_btn: in std logic;
s_play btn: in std logic;
play btn: in std logic;

record_btn: in std logic;
f _play_led: out std logic;
s_play_led: out std logic;
play led: out std_logic;
record_led: out std logic;

-- Data visualization
data_leds: out std logic vector(1ll downto 9);

ad_spi_sclk: out std logic;
ad_spi_sdata: in std logic;
ad_spi_cs: out std logic;

da_spi_sclk: out std logic;
da_spi_sdata: out std logic;
da_spi_cs: out std logic;

sd_spi_sclk: out std logic;
sd spi mosi: out std logic;
sd_spi miso: in std logic;
sd_spi_cs: out std logic;
sd_wp: in std logic;
sd_cd: in std _logic);

end voice_recorder;

architecture behavior of voice_recorder 1is
constant SCLK _DIVIDER: positive := 10; -- 10 MHz

constant SAMPLE_BITS: positive := 12;

-- number of bits 1in virtual address space used for counting
samples

constant INDEX BITS: positive := 32;

-- number of RAM address bits (RAM must be configured so entire
address space 1is addressable)

constant ADDR_BITS: positive := 17;

component clock _divider is
generic(divider: integer);

29

30

port(mclk: in std logic;
dclk: out std logic);
end component;

component down_counter 1is
generic(bits: positive := 4);
port(clk: in std logic;
k: in std_logic_vector(bits - 1 downto @); -- preset

value

CE: in std_logic := 'l1'; -- count enable

preset: in std logic := '@'; -- assert to set the
counter to k

y: out std logic vector(bits - 1 downto ©); -- counter
output

TC: out std logic); -- terminal count

end component;

component pmod_adl is
port(sclk: in std logic;
take_sample: in std logic;
ad_data: out std logic vector(1l downto @) := (others =>
'0);
ad_data_ready: out std logic;

spi_sclk: out std logic;

spi_cs: out std logic;

spi_sdata: in std logic);
end component;

component pmod_da2
port(da_data: in std logic vector (11 downto ©);

tick_sample: in std logic;
sclk: in std logic;
spi_data: out std logic;
spi_sclk: out std logic;
spi_cs: out std _logic);

end component;

component UI_controller
port(sclk: in std logic;

play btn: in std logic;
f_play_btn: in std logic;
s_play btn: in std logic;
audio_done: in std logic;
sd_done: in std logic;
rec_btn: in std logic;
play out: out std logic;
play led: out std logic;
f play_led: out std logic;
s_play led: out std logic;
rec_out: out std logic;
rec_led: out std logic;
tick _sample div: out std logic vector(9 downto 0));

end component;

component sync 1is
port(clk: in std logic;
input: in std _logic;
output: out std logic);
end component;

component audio_controller is
generic(sample_bits: positive := 12; -- sample depth in RAM
index_bits: positive := 32;
addr_bits: positive := 17); -- width of RAM address
bus (must be fully addressable)
port(clk: in std logic;

-- UI signals

rec: in std_logic;
play: in std logic;
sd_done: in std logic;
done: out std logic;

take_sample: in std logic;

31

32

-- A/D

ad_data: in std logic vector(1l downto 9);
ad_data_ready: in std logic;
ad_take_sample: out std_logic;

-- D/A
da_data: out std logic vector(11l downto 9);
da_new_sample: out std logic;

-- Address mapping information

index_audio: out std logic vector(index_bits - 1 downto
0); -- index of end of buffer/free space 1if recording or playing,
respectively (exclusive)

index_sd: in std logic vector(index_bits - 1 downto ©0);

-- RAM

ram_wr_en: out std logic;

ram_addr: out std logic vector(addr_bits - 1 downto ©0);
ram_din: in std logic vector(sample_bits - 1 downto ©0);
ram_dout: out std logic vector(sample_bits - 1 downto

9));

end component;

component sd_driver is
generic(sample_bits: positive := 12; -- sample depth in RAM
index_bits: positive := 40;
addr_bits: positive := 17); -- width of RAM address
bus (must be fully addressable)
port(sclk: in std logic;
rec: in std _logic;
play: in std logic;
audio_done: in std logic;
done: out std logic;
error: out std logic;

index_audio: in std_logic_vector(index_bits - 1 downto
0); -- location of audio controller in recordin
index_sd: out std logic vector(index_bits - 1 downto ©);

-- location of SD driver 1in recording

-- SD card

sd _spi_sclk: out std logic;
sd_spi mosi: out std logic;
sd_spi_miso: in std logic;
sd spi cs: out std logic;
sd_wp: in std logic;

sd_cd: in std logic;

-- RAM

ram_wr_en: out std logic;

ram_addr: out std logic vector(addr_bits - 1 downto 0);
ram_din: in std logic vector(sample_bits - 1 downto 0);
ram_dout: out std logic vector(sample bits - 1 downto

9));

end component;

component audio buffer is
port(clka: in std_logic;

wea: in std _logic vector(® downto 0);
addra: in std logic_vector(16 downto 9);
dina: in std logic vector(1ll downto 9);
douta: out std logic_vector(1ll downto 9);
clkb: in std logic;
web: in std logic vector(@ downto 9);
addrb: in std logic vector(16 downto 9);
dinb: in std_logic_vector(1ll downto 9);
doutb: out std logic vector(1l downto ©));

end component;

component button is
generic(count: positive := 1000);
port(clk: in std logic;
input: in std logic;
output: out std logic);
end component;

34

-- clock used for SPI and all logic
signal sclk: std logic;

-- monopulsed buttons
signal s_play btn_mp, f_play btn_mp, play_btn_mp, record_btn_mp:
std_logic := '0@';

-- UI signals

signal rec, play, audio_done, sd_done, eof, sd_error: std logic
:= lel;

signal take_sample: std logic := '@°';

signal tick_sample_div: std logic vector(9 downto @) := (others
=> '0");

-- A/D signals
signal ad_data: std logic vector(1l downto @) := (others => '0');
signal ad_data_ready, ad_take_sample: std logic := '@’';

-- D/A signals
signal da_data: std logic vector(1l downto ©0);
signal da_new_sample: std logic;

-- SD signals
signal sd_wp_sync: std logic;

signal index_audio, index_sd: std _logic_vector(INDEX_BITS - 1
downto 0);

-- Audio RAM signals
signal audio_ram_wr_en: std_logic;
signal audio_ram _wr_en_vec: std logic vector(@ downto 0);
signal audio_ram_addr: std logic vector(ADDR_BITS - 1 downto ©)
:= (others => '90'");
signal audio_ram_din, audio_ram_dout:
std logic _vector(SAMPLE_BITS - 1 downto @) := (others => '90');

35

-- SD RAM signals

signal sd_ram_wr_en: std logic;

signal sd_ram_wr_en_vec: std logic vector(® downto 0);

signal sd_ram_addr: std logic vector(ADDR_BITS - 1 downto 0) :=
(others => '0");

signal sd_ram_din, sd_ram_dout: std logic vector(SAMPLE_BITS - 1
downto @) := (others => '0");

begin
data_leds <= da_data;

-- sclk generator
sclk_generator: clock _divider
generic map(divider => SCLK_DIVIDER)
port map(mclk => mclk,
dclk => sclk);

-- take_sample generator
take_sample_counter: down_counter
generic map(bits => 10)
port map(clk => sclk,
k => tick_sample_div,
TC => take_sample);

-- A/D
ad: pmod_adl
port map(sclk => sclk,

take_sample => ad_take_sample,
ad_data => ad_data,
ad_data_ready => ad_data_ready,
spi_sclk => ad_spi_sclk,
spi_sdata => ad_spi_sdata,
spi_cs => ad_spi_cs);

-- D/A
da: pmod_da2
port map(sclk => sclk,

tick_sample => da_new_sample,
da_data => da_data,

spi_sclk => da_spi_sclk,
spi_data => da_spi_sdata,
spi_cs => da_spi_cs);

-- play button debouncer
play btn_debounce: button
port map(clk => sclk,
input => play_btn,
output => play btn_mp);

--fast play button debouncer
f _play btn_debounce: button
port map(clk => sclk,
input => f _play btn,
output => f _play btn _mp);

-- slow play button debouncer
s_play_btn_debounce: button
port map(clk => sclk,
input => s_play btn,
output => s_play btn_mp);

-- record button debounce
record_btn_debounce: button
port map(clk => sclk,
input => record_btn,
output => record_btn_mp);

-- UI controller
ui_controller_map: UI_controller
port map(sclk => sclk,

play _btn => play btn_mp,
f_play_btn => f_play btn_mp,
s_play btn => s _play btn _mp,
rec_btn => record_btn_mp,
play_led => play led,

36

37

f play_led => f_play led,

s_play_led => s _play led,

rec_led => record_led,

audio_done => audio_done,

sd_done => sd_done,

play_out => play,

rec_out => rec,

tick_sample div => tick_sample div);

-- port map main audio controller
audio_controller _map: audio_controller
generic map(sample bits => SAMPLE_BITS,
index_bits => INDEX_BITS,
addr_bits => ADDR_BITS)

port map(clk => sclk,
rec => rec,
play => play,
sd_done => sd_done,
done => audio_done,
take_sample => take_sample,
ad_data => ad_data,
ad_data_ready => ad_data_ready,
ad_take sample => ad_take_sample,
da_data => da_data,
da_new_sample => da_new_sample,
index_audio => index_audio,
index_sd => index_sd,
ram_wr_en => audio_ram_wr_en,
ram_addr => audio_ram_addr,
ram_din => audio_ram_din,
ram_dout => audio_ram_dout);

sd_wp_sync_map: sync
port map(clk => sclk,
input => sd_wp,
output => sd_wp_sync);

sd_driver_map: sd_driver

generic map(sample bits => SAMPLE_BITS,
index_bits => INDEX_BITS,
addr_bits => ADDR_BITS)

port map(sclk => sclk,
rec => rec,
play => play,
audio_done => audio_done,
done => sd_done,
error => sd_error,
index_audio => index_audio,
index_sd => index_sd,
sd _spi_sclk => sd_spi_sclk,
sd_spi_mosi => sd_spi_mosi,
sd_spi_miso => sd_spi_miso,
sd spi cs => sd _spi cs,
sd wp => sd_wp_sync,
sd cd => '1",
ram_wr_en => sd_ram_wr_en,
ram_addr => sd_ram_addr,
ram_din => sd_ram_din,
ram_dout => sd_ram_dout);

-- block RAM audio buffer
audio_ram_wr_en_vec(©) <= audio_ram_wr_en;
sd_ram_wr_en_vec(0) <= sd_ram_wr_en;
ram: audio_buffer
port map(clka => sclk,
wea => audio_ram_wr_en_vec,
addra => audio_ram_addr,
dina => audio_ram_dout,
douta => audio_ram_din,
clkb => sclk,
web => sd_ram_wr_en_vec,
addrb => sd_ram_addr,
dinb => sd_ram_dout,
doutb => sd_ram_din);

end behavior;

39

pmod_ad1.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©7/20/2018 09:27:40 AM

-- Design Name:

-- Module Name: pmod_adl - behavior

-- Project Name: pmod_ad1l

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: Driver for the Diligent Pmod AD1 (Analog Devices
AD7476A) .

-- Dependencies: down_counter.vhd
-- Revision:

-- Revision .01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity pmod_adl is
port(sclk: in std logic;
take_sample: in std logic;
ad_data: out std logic vector(1l downto @) := (others =>
0');
ad_data_ready: out std logic;

spi_sclk: out std logic;
spi_cs: out std logic;

40

spi_sdata: in std_logic);
end pmod_adl;

architecture behavior of pmod_adl is
component down_counter 1is
generic(bits: positive := 4);
port (clk: in std logic;
k: in std_logic_vector(bits - 1 downto @); -- preset

value

CE: in std_logic := 'l'; -- count enable

preset: in std logic := '@'; -- assert to set the
counter to R

y: out std logic vector(bits - 1 downto ©); -- counter
output

TC: out std_logic); -- terminal count

end component;

-- Controller
type state type is (st _wait, st _shift, st load);
signal state: state_type := st_wait;

signal next_state: state_type := st wait;

-- Datapath

signal shift_en: std _logic := '0';

signal load _en: std logic := '@';

signal ser_data_reg: std logic vector(1l downto @) := (others =>
0');

signal shift_tc: std _logic := '0';

signal shift_preset: std logic := '0';
begin

-- Controller

shift_counter: down_counter port map(

clk => sclk,

k => std_logic_vector(to_unsigned(14, 4)),
preset => shift preset,
TC => shift_tc);

output_proc: process(state) begin

shift_en <= '0";
load_en <= '0"';

shift preset <= '0°;
spi_cs <= '1";
ad_data_ready <= '0';

case state is
when st _wait => shift_preset <= '1°;
when st_shift =>
shift_en <= '1";
spi_cs <= '0';
when st _load =>
load _en <= "1";
ad_data_ready <= '1';
end case;
end process;

next_state_proc: process(state, take_sample,
next state <= state;
case state is
when st_wait =>
if take_sample = '1' then
next_state <= st_shift;
end if;
when st_shift =>
if shift_tc = '1' then
next_state <= st_load;
end if;

shift_tc)

when st_load => next_state <= st_wait;

end case;
end process;

state_update_proc: process(sclk) begin
if rising _edge(sclk) then
state <= next_state;
end if;
end process;

begin

41

42

-- Datapath

-- pass clock input to output
spi_sclk <= sclk;

shift_proc: process(sclk) begin
if rising_edge(sclk) then
if shift_en = '1' then
-- shift SPI data into the LSB
ser_data_reg <= ser_data_reg(ser_data_reg'high - 1
downto @) & spi_sdata;
end if;
end if;
end process;

load_proc: process(sclk) begin
if rising_edge(sclk) then
if load_en = '1' then
-- copy 12 least significant bits from serial
register to A/D
-- data register
ad_data <= ser_data_reg(ad_data'range);
end if;
end if;
end process;
end behavior;

pmod_da2.vhd

-- Company: ENGS 31, 18X
-- Engineer: Afia Semin

-- Create Date: ©8/11/2018 07:54:21 PM
-- Design Name:

-- Module Name: pmod _da2 - behavior

-- Project Name: VoiceRecorder

43

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: Driver for the Diligent Pmod DA2 (Texas Instruments
DAC121S101).

-- Dependencies:

-- Revision:

-- Revision .01 - File Created
-- Additional Comments:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity pmod_da2 is
port(da_data: in std logic vector (11 downto ©0);

tick_sample: in std logic;
sclk: in std logic;
spi_data: out std logic;
spi_sclk: out std logic;
spi_cs: out std logic);

end pmod_da2;

architecture behavior of pmod_da2 is

signal n_shifts: unsigned(3 downto ©):="1111";

signal shift_en: std _logic;

signal par_data_reg: std logic vector(15 downto @) := (others =>
0');

signal TC: std_logic;

signal iCS: std_logic;

type state is (waits, load, shift);

signal curr_state, next_state: state;

begin
spi_sclk <= sclk;
spi_cs <= iCS;

shift count: process(sclk, n_shifts, iCS) begin
if rising _edge(sclk) then
if (n_shifts > @) and (iCS = '9") then
n_shifts <= n_shifts - 1;
elsif n_shifts = "0000" then
n_shifts <= "1111";
end if;
end if;

if n_shifts = "0000" then

TC <= '1";
else

TC <= '0';
end if;

end process shift_count;

input_reg: process(sclk, tick_sample) begin
if rising _edge(sclk) then
if tick_sample = '1' then
par_data_reg <= std logic vector(resize(
unsigned(da_data), 16));
elsif shift_en <= "1' then
spi_data <= par_data_reg(15);
par_data_reg <= par_data_reg(14 downto ©) & "@";
end if;
end if;
end process input_reg;

state update: process(sclk) begin
if rising _edge(sclk) then
curr_state <= next_state;
end if;

45

end process state_update;

controller: process(curr_state, tick_sample, TC) begin
ics <= '1';
shift_en <= '0";
next_state <= curr_state;

case curr_state is
when waits =>
iCS <= '1";
if tick_sample = '1' then
next_state <= load;
end if;

when load =>
next_state <= shift;

when shift =>
iCS <= '0’';
shift_en <= '1";
if TC = '"1" then
next_state <= waits;
end if;
end case;
end process controller;

end behavior;

audio_controller.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: 08/11/2018 07:12:17 PM
-- Design Name:
-- Module Name: audio_controller - behavior

46

-- Project Name: VoiceREcorder

-- Target Devices: Artix 7 - Basys 3
-- Tool Versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision ©.01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity audio_controller is
generic(sample_bits: positive := 12; -- sample depth in RAM
index_bits: positive := 40;
addr_bits: positive := 17); -- width of RAM address bus
(must be fully addressable)
port(clk: in std logic;

-- UI signals

rec: in std_logic;
play: in std logic;
sd_done: in std logic;
done: out std logic;

take_sample: in std logic;

-- A/D

ad_data: in std_logic_vector(1ll downto 9);
ad_data_ready: in std logic;
ad_take_sample: out std logic;

-- D/A
da_data: out std logic vector(1l downto 9);
da_new_sample: out std logic;

-- Address mapping information

index_audio: out std logic vector(index bits - 1 downto 9);
-- 1index of end of buffer/free space i1f recording or playing,
respectively (exclusive)

index_sd: in std logic vector(index_bits - 1 downto ©0);

-- RAM

ram_wr_en: out std logic;

ram_addr: out std logic vector(addr_bits - 1 downto ©0);

ram_din: in std logic vector(sample_bits - 1 downto 0);

ram_dout: out std logic vector(sample_bits - 1 downto 9));
end audio_controller;

architecture behavior of audio_controller is
constant TAKE_SAMPLE_DIVIDER: integer := 20;
constant TAKE_SAMPLE_BITS: integer :=

integer(ceil(log2(real(TAKE_SAMPLE_DIVIDER))));

constant RAM_SIZE: positive := 2 ** addr_bits;

-- Maximum possible index
constant INDEX_MAX: unsigned(index_bits - 1 downto @) := (others
=> '1");

component down_counter 1is
generic(bits: positive := 4);
port (clk: in std_logic;
k: in std_logic _vector(bits - 1 downto ©); -- preset
value
CE: in std logic := 'l'; -- count enable
preset: in std_logic := '@'; -- assert to set the
counter to k
y: out std logic vector(bits - 1 downto ©); -- counter

47

48

output
TC: out std_logic); -- terminal count
end component;

type state_type is (st_idle, st _record, st_ad wait, st write,
st_play, st_index_inc, st_done);
type index_sel type is (hold, increment, reset);

signal state: state_type := st_idle;
signal next_state: state_type;

signal index_sel: index_sel type;
signal rec_end_en: std logic;
signal da_en: std _logic;

signal index_reg: unsigned(INDEX_MAX'range) := (others => '0");
begin

ad_take sample <= take_sample;
da_new_sample <= take_sample when da_en = '1' else '0';

-- Take index modulo the RAM size, creating a circular buffer
ram_addr <= std _logic vector(index_reg(ram_addr'range));
ram_dout <= ad_data;

da_data <= ram_din;

-- Update address register
index_reg proc: process(clk) begin
if rising_edge(clk) then
case index_sel is
when hold => null;
when increment => index_reg <= index_reg + 1;
when reset => index_reg <= (others => '0');
end case;
end if;
end process;

index_audio <= std logic vector(index_reg);

49

next_state_proc: process(state, index_reg, play, rec,
take_sample, ad data_ready, sd _done, index_sd)
variable index_sd _end: unsigned(index_sd'range); -- end of
free RAM space while recording
begin
-- Calculate end of free space (only used when recording)
if unsigned(index_sd) > INDEX_MAX - RAM_SIZE then
index_sd_end := INDEX_ MAX;
else
index_sd_end := unsigned(index_sd) + RAM_SIZE;
end if;
next_state <= state;

case state is
when st_idle =>
if rec = '1"' then
next_state <= st_record;
elsif play = '1' then
next_state <= st_play;

end if;
-- Record
when st _record =>
if rec = '0"' or sd_done = '1" then
next_state <= st_done;
elsif take_sample = '1' and index_reg < index_sd_end

then
-- only record when there is free space
next_state <= st_ad wait;
end if;
when st _ad _wait =>
if ad_data_ready = '1' then
next_state <= st_write;
end if;
when st_write =>
if index_reg = INDEX_MAX then
-- If we run out of 1indices, stop.
-- Must be checked after sample has been taken,

50

but before
-- an overflow can occur

next_state <= st_done;
else
next_state <= st_record;
end if;
-- Play
when st_play =>
if play = '@' then
next_state <= st_done;
elsif index_reg + 1 < unsigned(index_sd) then
-- only play when there are samples in the buffer
if take_sample = '1' then
next_state <= st_index_inc;
end if;
elsif sd _done = '1' then
-- 1f the sd card has finished buffering and we
reach
-- the end of the buffer, we are done
next_state <= st_done;
end if;
when st_index_inc => next_state <= st_play;
when st _done =>
if sd _done = '1' then
next_state <= st_idle;
end if;
end case;
end process;

output_proc: process(state) begin
index_sel <= reset;
rec_end en <= '0';
da_en <= '0"';

ram_wr_en <= '0';
done <= '0';

case state is

51

when st_idle => null;

when st_record =>
index_sel <= hold;

when st_ad_wait =>
index_sel <= hold;

when st_write =>
ram_wr_en <= '1"';
index_sel <= increment;
rec_end _en <= '1";

when st_play =>
index_sel <= hold;
da_en <= '1";

when st_index_inc =>
index_sel <= increment;

when st _done =>
done <= '1"';

end case;
end process;

state _update_proc: process(clk) begin
if rising_edge(clk) then
state <= next_state;
end if;
end process;

end behavior;

UI_controller.vhd

-- Company: ENGS 31, 18X
-- Engineer: Afia Semin

-- Create Date: 08/12/2018 ©7:35:23 PM

-- Design Name:

-- Module Name: UI_controller - Behavioral
-- Project Name: VoiceRecorder

52

-- Target Devices: Artix 7 - Basys 3
-- Tool Versions:
-- Description:

-- Dependencies:

-- Revision:
-- Revision ©.091 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity UI_controller is
port(sclk: in std logic;

play btn: in std logic;
f _play_btn: in std logic;
s_play btn: in std logic;
audio_done: in std logic;
sd_done: in std logic;
rec_btn: in std logic;
play out: out std _logic;
play led: out std logic;
f _play_led: out std logic;
s_play_led: out std logic;
rec_out: out std logic;
rec_led: out std logic;
tick_sample div: out std logic vector(9 downto 9));

end UI controller;

architecture Behavioral of UI_controller is

constant TAKE_SAMPLE_BITS: integer := 10;

constant TAKE_SAMPLE_DIVIDER: integer := 227;
constant F_TAKE_SAMPLE_DIVIDER: integer :
constant S_TAKE_SAMPLE_DIVIDER: integer :

53

-- 44.052 RHz

114; -- 87.719 kHz
600; -- 16.667 kHz

type state is (idle, play, fast play, slow play, rec, done wait);
signal curr_state, next_state: state;

begin

controller: process(curr_state, f play btn, s _play btn, play btn,
rec_btn, audio_done, sd_done) begin

play out <= '0';
play led <= '0';
f play led <= '0°;
s_play led <= '©
rec_out <= '90"';
rec_led <= '0’;
tick _sample_div <=

std logic vector(to_unsigned(TAKE_SAMPLE DIVIDER,

next_state <= curr_state;

case curr_state is
when idle =>

if play btn = "1"' then
next_state <= play;
end if;

if £ play btn = '1' then
next_state <= fast_play;
end if;

if s_play _btn = '1' then
next_state <= slow_play;

end if;

if rec_btn = '1"' then

TAKE_SAMPLE_BITS));

next_state <= rec;
end if;

when play =>
play out <= '1";
play led <= '1";

if audio_done = '1' and sd_done = '1' then

next_state <= idle;
elsif play btn = '1' then

next_state <= done_wait;
end if;

when fast_play =>
play out <= '1";
f play_led <= '1"';
tick _sample_div <=
std logic vector(to_unsigned(F_TAKE_SAMPLE_DIVIDER,
TAKE_SAMPLE_BITS));

if audio _done = '1' and sd_done = '1' then

next_state <= idle;
elsif f_play btn = '"1' then

next_state <= done_wait;
end if;

when slow_play =>
play out <= '1";
s_play_led <= '1°;
tick _sample_div <=
std logic vector(to_unsigned(S_TAKE_SAMPLE_ DIVIDER,
TAKE_SAMPLE_BITS));

if audio_done = '1' and sd_done = '1' then

next_state <= idle;
elsif s_play btn = '"1' then

next_state <= done_wait;
end if;

when rec =>
rec_out <= "'1"';

54

55

rec_led <= '1"';

if audio_done 1" and sd_done = '1' then
next_state <= idle;

elsif rec_btn = '1' then
next_state <= done_wait;

end if;

when done_wait =>

if audio_done = '1' and sd_done = '1' then
next_state <= idle;

end if;

end case;

end process;

state_update: process(sclk) begin
if rising_edge(sclk) then
curr_state <= next_state;
end if;
end process state_update;

end Behavioral;

sd_driver.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: 08/14/2018 ©4:27:27 PM
-- Design Name:

-- Module Name: sd_driver - behavior
-- Project Name:

-- Target Devices:

-- Tool Versions:

-- Description:

-- Dependencies: sd_cmd.vhd

56

-- Revision:
-- Revision ©.01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_driver is
generic(sample_bits: positive := 12; -- sample depth in RAM
index_bits: positive := 40;
addr_bits: positive := 17); -- width of RAM address bus
(must be fully addressable)
port(sclk: in std_logic;
rec: in std logic;
play: in std logic;
audio _done: in std logic;
done: out std logic;
error: out std logic;

index_audio: in std logic vector(index _bits - 1 downto 0);
-- Llocation of audio controller in recordin

index_sd: out std logic vector(index_bits - 1 downto ©); --
Location of SD driver 1in recording

-- SD card

sd_spi_sclk: out std logic;
sd_spi_mosi: out std logic;
sd spi miso: in std logic;
sd spi _cs: out std logic;
sd wp: in std logic;

sd_cd: in std _logic;

57

-- RAM

ram_wr_en: out std logic;

ram_addr: out std logic_ vector(addr_bits - 1 downto 0);

ram_din: in std logic vector(sample_bits - 1 downto 0);

ram_dout: out std logic vector(sample bits - 1 downto 9));
end sd_driver;

architecture behavior of sd_driver is
constant SECTOR_SIZE: positive := 512;

-- don't start at beginning of device
constant SECTOR_OFFSET: natural := 8192;
constant ADDR_OFFSET: natural := SECTOR_OFFSET * SECTOR_SIZE;

-- hardcoded erase block size
constant ERASE_SECTORS: positive := 8192;

constant BYTES_PER_INDEX: positive := 2;
constant INDICES_PER_SECTOR: positive := SECTOR_SIZE /
BYTES_PER_INDEX;

constant RAM_SIZE: positive := 2 ** addr_bits;

-- Maximum possible index
constant INDEX_MAX: unsigned(index_bits - 1 downto @) := (others
=> '1");

component down_counter 1is
generic(bits: positive := 4);
port(clk: in std_logic;
k: in std _logic vector(bits - 1 downto 0); -- preset
value
CE: in std logic := '1'; -- count enable
preset: in std_logic := '@'; -- assert to set the
counter to k
y: out std logic vector(bits - 1 downto ©); -- counter

58

output
TC: out std logic); -- terminal count
end component;

component sd_cmd is
port(sclk: in std logic;
cmd: in std_logic_vector(5 downto 0);
cmd_arg: in std_logic_vector(31 downto 0);

cmd_start: in std_logic; -- assert to start command
cmd_end: out std logic;
res rl: out std logic vector(7 downto ©) := x"@0"; -- ri

response (first byte of response)
res_data: out std logic vector(31 downto 9) :=
x"00000000"; -- response data/card status
data_index: out std logic vector(8 downto 0);
data_in: in std_logic_vector(7 downto 0);
data_out: out std logic vector(7 downto 0);
data_out_en: out std logic;
error: out std logic;
sd_spi_sclk: out std logic;
sd_spi mosi: out std logic;
sd_spi_miso: in std logic;
sd_spi cs: out std logic);
end component;

type state_type is (start, init, go_idle state, send_if cond,
app_cmd, sd_send op _cond, read ocr, set blocklen, send csd,
idle, st _done, st _error,
st_play, read_length, read_samples,
play sector_inc,
st _record, write samples, record _sector_inc,
erase_wr_blk_start_addr, erase_wr_blk_end_addr, erase, write_length);
signal state: state_type := start;
signal next_state: state_type;

signal sd_init: std_logic;

-- Command type and argument registers

59

signal cmd: std logic vector(5 downto 0);
signal cmd_arg: std logic vector(31 downto 0);
signal cmd_start, cmd_end: std logic;

-- Response data
signal res_rl: std logic vector(7 downto 0);
signal res_data: std logic vector(31 downto 0);

-- Data block

signal data_index: std logic vector(8 downto 0);

signal data_in, data_out: std logic vector(7 downto ©0);
signal data_out_en: std logic;

type read_dest_type is (dest_length, dest _ram, dest csd);
signal read_dest: read_dest_type;

signal cmd_error: std logic;

-- card information

-- card specific data (CSD)

subtype CSD_STRUCTURE 1is natural range 127 downto 126;

subtype CSD_V1_READ_BL_LEN is natural range 83 downto 80;

subtype CSD_V1 C _SIZE is natural range 73 downto 62;

subtype CSD_V1 C_SIZE MULT is natural range 49 downto 47;

subtype CSD_V2_C_SIZE is natural range 69 downto 48;

signal csd_reg: std_logic_vector(127 downto @) := (others =>
0');

-- maximum sector index (from CSD)
signal card_sector_max: unsigned(31 downto ©0);

-- operation conditions register (indicates that card is SDHC or
SDXC)

constant OCR_CCS: natural := 30;

signal ocr_reg: std logic vector(31 downto 0);

signal ocr_reg en: std logic;

60

-- Audio information

-- current sector

signal sector: unsigned(31 downto @) := (others => '0');
signal addr: unsigned(40@ downto 0);

signal sector_reset, sector_inc: std logic;

signal sector_multiplier: unsigned(9 downto 0);

-- 1index: logical index in the audio file

signal index: unsigned(index_bits - 1 downto ©0);

-- maximum logical index of recorded data

-- stored in first bytes of card (little endian)

signal index_end: unsigned(index_bits - 1 downto @) := (others =>
0');

begin

init_counter: down_counter
generic map(bits => 8)
port map(clk => sclk,
k => x"64",
TC => sd_init);

sd_cmd_map: sd_cmd
port map(sclk => sclk,

cmd => cmd,
cmd_arg => cmd_arg,
cmd_start => cmd_start,
cmd_end => cmd_end,
res_rl => res_ril,
res_data => res_data,
data_index => data_index,
data_in => data_in,
data_out => data_out,
data_out_en => data_out_en,
error => cmd_error,

61

sd_spi_sclk => sd_spi_sclk,
sd_spi_mosi => sd_spi_mosi,
sd spi miso => sd_spi miso,
sd_spi cs => sd _spi _cs);

ocr_proc: process(sclk) begin
if rising_edge(sclk) then

if ocr_reg en = '1' then
ocr_reg <= res_data;
end if;
end if;

end process;

read_dest_proc: process(sclk, index, index_end, data_index,
read dest, ram_din, data out, data out_en)
variable bit_low: natural;
variable unwrapped_index: unsigned(index'range);
begin
bit_low := to_integer(unsigned(data_index)) * 8;

ram_wr_en <= '0';
ram_dout <= (others => '90");
data_in <= (others => '90");

-- Every 12 bit sample 1is stored in two bytes on the SD card
unwrapped_index := index + unsigned(data_index) /
BYTES_PER_INDEX;
ram_addr <=
std logic vector(unwrapped_index(ram_addr'range));

case read_dest is
when dest_ram =>

ram_wr_en <= data_out_en;

if data_index(®) = '@' then -- even
data_in <= ram_din(3 downto 0) & "0000";
ram_dout <= "00000000" & data_out(7 downto 4);

else -- odd
data_in <= ram_din(11l downto 4);

62

ram_dout <= data_out & ram_din(3 downto 0);
end if;
when dest_length =>
if unsigned(data_index) < 4 then
data_in <= std logic vector(index(bit_low + 7
downto bit_low));
end if;
when others => null;
end case;

if rising_edge(sclk) then
if data_out_en = '1' then
case read_dest is
when dest_length =>
if unsigned(data_index) < 4 then
index_end(bit_low + 7 downto bit low) <=
unsigned(data_out);
end if;
when dest_csd => csd_reg(bit_low + 7 downto
bit low) <= data_out;
when others => null;
end case;
end if;
end if;
end process;

card_size_proc: process(csd_reg) begin
if csd_reg(CSD_STRUCTURE) = "00" then
-- SD v1.xx or MMC
card_sector_max <=
(resize(unsigned(csd_reg(CSD_V1_C_SIZE)), card_sector_max'length) +
1) sll
(to_integer(unsigned(csd_reg(CSD_V1 C SIZE MULT))) +
2 + to_integer(unsigned(csd_reg(CSD_V1 READ BL_LEN))) / SECTOR_SIZE);
else
-- SD >=v2.00
card_sector_max <=
resize(unsigned(csd_reg(CSD_V2 C_SIZE)) * 1024 + 1023,

63

card_sector_max'length);
end if;
end process;

sector_proc: process(sclk) begin
if rising _edge(sclk) then
if sector_reset = '1' then
sector <= to_unsigned(SECTOR_OFFSET, sector'length);
elsif sector_inc = '1' then
sector <= sector + 1;
end if;
end if;
end process;

sector_multiplier <= "000000OOO1" when ocr_reg(OCR_CCS) = '1°
else "1000000000";

index <= resize((sector - SECTOR_OFFSET) * INDICES_ PER_SECTOR,
index'length);
addr <= resize(sector * SECTOR_SIZE, addr'length);

index_sd <= std logic vector(index);

next_state _proc: process(state, sd_init, play, rec, cmd_end,
cmd_error, res_rl, res_data, index_audio, index, index_end, sector,
card_sector_max, audio_done, sd_wp)
variable index_audio_end: unsigned(index_sd'range); -- end of
free RAM space during playback
begin
-- Calculate end of free space (only used when playing)
if unsigned(index_audio) > INDEX_MAX - RAM_SIZE then
index_audio_end INDEX_MAX;
else

index_audio_end
end if;
next state <= state;

unsigned(index_audio) + RAM_SIZE;

case state is

64

when start => next_state <= init;
when init =>
if sd_init = '1"' then
next _state <= go_idle_ state;
end if;
when idle =>
if play = '1' then
next_state <= read_length;

elsif rec = '1' then
next_state <= st_record;
end if;

when st_play =>
-- the 1index conditions are also checked in
play sector _1inc.
-- They are checked here in the unlikely case that

they are

-- violated before the recording even begins (very
short

-- recording, card smaller than the offset), but they
must also

-- be checked before the increment occurs to prevent
wrapping

-- with the largest cards and recordings.
if play = '@' or index + (INDICES_PER_SECTOR - 1) >
index_end or sector > card_sector_max then
next_state <= st_done;
elsif index_audio_end > index + (INDICES_PER_SECTOR -

1) then
next_state <= read_samples;
end if;
when play sector_inc =>

-- handle reaching the end of the recording, running
out of SD

-- card space, or reaching the maximum index. These
must be

-- handled before they occur to avoid a possible
overflow, but
-- after the samples for the sector have been read.

if index + (INDICES_PER_SECTOR - 1) >= index_end or
sector >= card_sector_max then
next_state <= st_done;
else
next_state <= st_play;
end if;
when st _record =>
-- Like playback, we should handle the boundary
conditions both
-- here and in record_sector_inc
if sd_ wp = "1" then
next_state <= st_done;
elsif sector > card_sector_max then
next_state <= write_length;
elsif unsigned(index_audio) > index +
(INDICES_PER_SECTOR - 1) then
if (sector mod ERASE_SECTORS) = © then
next_state <= erase_wr_blk_start_addr;

else
next_state <= write samples;
end if;
elsif audio_done = '1' then
next_state <= write_length;
end if;

when record_sector_inc =>
if sector >= card_sector_max then
next_state <= write_length;

else
next_state <= st_record;
end if;
when st _done =>
if audio_done = '1' then
next_state <= idle;
end if;

when st_error => null;
when others =>
if cmd_end = '1' then
case state is

65

play sector_inc;

record_sector_inc;

erase_wr_blk_end_addr;

erase;

66

when go_idle_state =>
if res_rl = x"01" then
next state <= send if cond;
end if;
when send_if cond =>
if res_data(11l downto @) = x"1AA" then
next state <= app_cmd;
else
next_state <= st_error;
end if;
when app_cmd =>
next_state <= sd_send_op_cond;
when sd_send_op_cond =>
if res_rl = x"01" then
-- retry ACMD41
next_state <= app_cmd;
else
next_state <= read_ocr;
end if;
when read_ocr =>
if res_data(OCR_CCS) = '"1"' then
next_state <= send_csd;
else
next_state <= set_blocklen;
end if;
when set_blocklen => next_state <= send_csd;
when send_csd => next_state <= idle;
when read_length => next_state <= st _play;
when read_samples => next_state <=

when write_samples => next_state <=
when erase_wr_blk _start_addr => next_state <=
when erase_wr_blk end _addr => next_state <=

when erase => next_state <= write_samples;
when write_length => next_state <= st_done;

when others => null;
end case;
end if;
end case;

-- error catching

if cmd_error = "1' then
next state <= st_error;
end if;

end process;

output_proc: process(state, sector, sector_multiplier) begin
done <= '0';
error <= '0';
sector_reset <= '0’;
sector_inc <= '0';
ocr_reg en <= '0';
cmd_start <= '0';
cmd <= "000000";
cmd_arg <= x"00000000";
read_dest <= dest_ram;

case state is
when start => null;
when init => null;
when idle => sector_reset <= '1';
when st_play => null;
when play sector_inc => sector_inc <= '1';
when st_record => null;
when record_sector_inc => sector_inc <= '1";
when st _done => done <= '1';
when st_error => error <= '1';
when others =>
cmd_start <= '1°;
case state is
when go_idle state => null;
when send_if cond =>
cmd <= "001000";

67

68

cmd_arg <= x"000001AA";
when app_cmd =>
cmd <= "110111";
when sd_send _op_cond =>
cmd <= "101001";
cmd_arg <= x"40000000";
when read_ocr =>
cmd <= "111010";
ocr_reg en <= '1";
when set_blocklen =>
cmd <= "010000";
cmd_arg <= x"00000200";
when send_csd =>
cmd <= "001001";
read dest <= dest _csd;
when read_length =>
cmd <= "910001";
read_dest <= dest_length;
when read_samples =>
cmd <= "0©10001";
cmd_arg <= std logic vector(resize(sector *
sector_multiplier, cmd_arg'length));
read _dest <= dest_ram;
when write_samples =>
cmd <= "911000";
cmd_arg <= std logic vector(resize(sector *
sector_multiplier, cmd_arg'length));
read_dest <= dest_ram;
when erase_wr_blk start_addr =>
cmd <= "100000";
cmd_arg <= std logic vector(resize((sector +
ERASE_SECTORS) * sector_multiplier + ERASE_SECTORS, cmd_arg'length));
when erase_wr_blk _end_addr =>
cmd <= "100001";
cmd_arg <= std logic vector(resize((sector +
ERASE_SECTORS - 1) * sector_multiplier, cmd_arg'length));
when erase =>
cmd <= "100110";

69

when write_length =>
cmd <= "011000";
read_dest <= dest_length;
when others => null;
end case;
end case;
end process;

state_update_proc: process(sclk) begin
if rising _edge(sclk) then
state <= next_state;
end if;
end process;

end behavior;

sd_cmd.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: 08/14/2018 04:27:27 PM
-- Design Name:

-- Module Name: sd_cmd - behavior

-- Project Name: VoiceRecordr

-- Target Devices:

-- Tool Versions:

-- Description:

-- Dependencies: sd_send.vhd, sd_recv.vhd, down_counter.vhd
-- Revision:

-- Revision .91 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_cmd is
port(sclk: in std logic;
cmd: in std logic vector(5 downto 0);
cmd_arg: in std_logic_vector(31 downto 0);

cmd_start: in std_logic; -- assert to start command
cmd_end: out std logic;
res rl: out std logic vector(7 downto ©) := x"@0"; -- ri

response (first byte of response)
res_data: out std logic vector(31 downto ©) := x"00000000";
-- response data/card status
data_index: out std logic vector(8 downto 0);
data_in: in std_logic_vector(7 downto 0);
data_out: out std logic vector(7 downto 0);
data_out_en: out std logic;
error: out std logic;
sd _spi_sclk: out std logic;
sd_spi mosi: out std logic;
sd_spi_miso: in std logic;
sd_spi cs: out std logic);
end sd_cmd;

architecture behavior of sd_cmd is
constant CMD_LENGTH: integer := 7;
constant CMD_INDEX_BITS: integer :=

integer(ceil(log2(real(CMD_LENGTH))));

component down_counter is
generic(bits: positive := 4);
port(clk: in std logic;
k: in std logic vector(bits - 1 downto @); -- preset

70

71

value

CE: in std_logic := '1'; -- count enable

preset: in std_logic := '@'; -- assert to set the
counter to k

y: out std logic vector(bits - 1 downto ©); -- counter
output

TC: out std logic); -- terminal count

end component;

component sd_send is
generic(bits: positive := 8);
port(clk: in std_logic;
data: in std logic vector(bits - 1 downto ©); -- data to
send to card

new_data: in std_logic; -- data is registered on rising
edge when asserted

done: out std logic; -- when asserted, the previously
registered data has been processed

spi_mosi: out std logic := '0';

spi_cs: out std logic := "1");

end component;

component sd_recv is
generic(bits: positive := 8);
port(clk: in std logic;
data: out std logic vector(bits - 1 downto ©); -- data
to send to card

new_data: out std_logic; -- asserted when new data
available on next rising edge, cleared after get _data asserted
spi_miso: in std logic := '@'");

end component;

type state_type is (idle,
cmd_load, send_wait, -- send command
res _wait, recv_wait, res_data load, --
receive response
data_token_wait, data_read wait,
data_read_load, -- read data block

data_token_load, data_write_load,

data_write_wait, data_response_wait, -- write data block

signal
signal

busy wait, done, sd _error);
state: state type := idle;
next_state: state_type;

type send data _src_type is (src_cmd, src_data_in,
src_data_token);

signal

signal
signal

signal
signal

send_data_src: send_data_src_type;

send_data: std logic vector(7 downto 90);
send_done, send new _data: std logic;

recv_data: std logic vector(7 downto 0);
recv_data_block, recv_done: std logic;

-- Command type and argument registers

signal
signal
signal

signal
9);

signal

signal

signal

cmd_reg: unsigned(cmd'range);
cmd_arg_reg: std logic vector(cmd_arg'range);
cmd_reg en: std logic;

cmd_index_vec: std logic vector(CMD_INDEX BITS - 1 downto
cmd_index: unsigned(cmd_index_vec'range);

cmd_index_preset, cmd_index_inc, cmd_done: std logic;
cmd_data: std logic vector(55 downto @);

-- Response data

signal
signal
signal
signal

res_max_index: std logic vector(3 downto 0);
res_index_vec: std logic vector(res_max_index'range);
res_index: unsigned(res_index_vec'range);
res_index_preset, res_index_inc, res_rl _en, res_data_en,

res_done: std logic;

-- Data block

signal
signal
(others =>

data_index_reset, data_index_inc: std logic;
data_index_reg, data_index_max: unsigned(9 downto @) :=
0);

72

begin

sd_spi sclk <= sclk;

send: sd_send
port map(clk => sclk,
data => send_data,
new_data => send_new_data,
done => send_done,
spi_mosi => sd_spi_mosi,
spi_cs => sd_spi _cs);

recv: sd_recv
port map(clk => sclk,
data => recv_data,
new_data => recv_done,
spi_miso => sd_spi_miso);

cmd_index <= unsigned(cmd_index_vec);
cmd_index_counter: down_counter
generic map(bits => CMD_INDEX_BITS)
port map(clk => sclk,
k => std logic vector(to_unsigned(CMD_LENGTH

CMD_INDEX_BITS)),

CE => cmd_index_inc,

preset => cmd_index_preset,
y => cmd_index_vec,

TC => cmd_done);

cmd_reg_update: process(sclk) begin
if rising _edge(sclk) then
if cmd_reg en = '1' then
cmd_reg <= unsigned(cmd);
cmd_arg_reg <= cmd_arg;
end if;
end if;
end process;

73

74

cmd_data_proc: process(cmd_reg, cmd_arg reg)
variable crc: std logic vector(6 downto 0);
begin
-- Only CMDO and CMD8 actually require CRC unless it 1is
explicitly
-- enabled. Rather than calculate it, we use hardcoded values
assuming
-- the argument will always be the same.
if cmd_reg = 0 then
-- arg 1s 6x00000000
crc := "l1l001010";
elsif cmd_reg = 8 then
-- arg 1s 0x000001AA

crc := "1000011";
else

crc := "0000000";
end if;

-- some cards apparently Like having a OxFF byte ahead of the
command (after CS 1is asserted)
cmd_data <= x"FF" & "01" & std logic vector(cmd_reg) &
cmd_arg_reg & crc & "1";
end process;

send_data_proc: process(send_data_src, cmd_index, cmd_data,
data_index_reg, data_index_max, data_in)
variable addr_low: integer;
begin
addr_low := to_integer(cmd_index) * 8;
case send_data_src is
when src_cmd => send_data <= cmd_data(addr_low + 7 downto
addr_low);
when src_data_in =>
if data_index_reg < data_index_max - 1 then
send_data <= data_in;
else
-- last two bytes are a dummy CRC

send_data <= x"00";
end if;
when src_data_token => send _data <= x"FE";
end case;
end process;

res_max_index_proc: process(cmd_reg) begin
-- calculate response lLength
case to_integer(cmd_reg) is
when 8 | 41 | 58 =>
res_max_index <= x"3";
when others =>
res_max_index <= x"0";
end case;
end process;

res_index <= unsigned(res_index_vec);
res_index_counter: down_counter
generic map(bits => res_index'length)
port map(clk => sclk,
k => res_max_index,
CE => res_index_inc,
preset => res_index_preset,
y => res_index_vec,
TC => res_done);

res_rl proc: process(sclk) begin
if rising _edge(sclk) then

if res_rl en = '1' then
res_rl <= recv_data;
end if;
end if;

end process;

res_data_proc: process(sclk, res_index)
variable addr_low: integer;

begin
addr_low := to_integer(res_index) * 8;

76

if rising_edge(sclk) then

if res_data_en = '1' then
res_data(addr_low + 7 downto addr_low) <= recv_data;
end if;
end if;

end process;

data_index_max_proc: process(cmd_reg) begin
case to_integer(cmd_reg) is
when 17 | 18 | 24 | 25 => data_index_max <= "1000000001";
-- 513 (512 bytes + CRC)
when 9 | 10 => data_index_max <= "0000010001"; -- 17 (16
bytes + CRC)
when others => data_index_max <= (others => '90");
end case;
end process;

data_index_counter: process(sclk, data_index_reset,
data_index_inc) begin
if rising_edge(sclk) then

if data_index_reset = '1' then
data_index_reg <= (others => '90");
elsif data_index_inc = '1' then
data_index_reg <= data_index_reg + 1;
end if;
end if;

end process;

-- Truncate index register and send it to output. This will wrap
around when

-- 1t reaches the CRC (which the user doesn't care about), but
data_out_en

-- will not be asserted, so users should 1ignore 1it.

data_index <= std logic vector(data_index_reg(data_index'range));

-- send received data directly to data out

-- should only be assumed to be valid when data _out_en 1is
asserted

data_out <= recv_data;

next_state_proc: process(state, cmd_reg, cmd_start, cmd_done,
send_done, recv_data, recv_done, res_done, data_index_reg,
data_index_max) begin
next_state <= state;
case state is
when idle =>
if cmd_start = "1' then
next_state <= cmd_load;
end if;
when cmd_load =>
if cmd_done = '1' then
next_state <= res_wait;

else
next_state <= send_wait;
end if;
when send_wait =>
if send_done = "1' then
next_state <= cmd_load;
end if;

when res_wait =>
if recv_data /= x"FF" then

-- 1gnore 1idle state bit in determining if there

was an error
if (recv_data and x"FE") = x"00" then
next_state <= recv_wait;

else
next_state <= sd_error;
end if;
end if;
when recv_wait =>
if recv_done = '1' then
next_state <= res_data_load;
end if;
when res_data load =>
if res_done = '1' then

case to_integer(cmd_reg) is
-- commands that have data block

77

when 9 | 10 | 17 => next_state <=

data_token_wait;

after them

when 24 => next_state <= data_token_load;
-- responses possibly have a busy signal

when others => next_state <= busy_wait;

end case;
else

next_state <= recv_wait;
end if;

when data_token_wait =>
if recv_data = x"FE" then
next_state <= data_read_wait;

end if;
when data_read _wait =>
if recv_done = '1' then
next_state <= data_read_load;
end if;

when data_read load =>
if data_index_reg = data_index_max then
next_state <= done;
else
next_ state <= data_read wait;
end if;

when data_token_load => next_state <= data_write wait;

when data_write_wait =>

if send done = '1' then
next_state <= data_write_load;
end if;

when data_write_load =>
if data_index_reg = data_index_max then
next_state <= data_response_wait;
else
next_state <= data_write_wait;
end if;
when data_response_wait =>
if recv_data(4 downto @) = "00101" then

-- correct response, wait for busy signal to

end

79

next_state <= busy wait;
elsif recv_data /= x"FF" then
-- got response, but it was not what was expected
next_state <= sd_error;
end if;
when busy wait =>
if recv_data = x"FF" then
next_state <= done;
end if;
when done => next_state <= idle;
when sd_error => next_state <= idle;
end case;
end process;

output_proc: process(state, data_index_reg, data_index_max) begin
cmd_reg en <= '0';
cmd_index_preset <= '0';
cmd_index_inc <= '0';
send new_data <= '0';
res_index_preset <= '0';
res_index_inc <= '0';
res_ rl en <= '0';
res _data _en <= '0';
data_index_reset <= '0';
data_index_inc <= '0";
data_out_en <= '0';
send _data_src <= src_cmd;
cmd_end <= '9°';
error <= '0';

case state is

when idle =>
cmd_reg en <= '1';
cmd_index_preset <= '1"';

when cmd_load =>
cmd_index_inc <= '1°;
send_new_data <= '1';

when send_wait => null;

80

when res_wait =>
res_index_preset <=
res_ rl en <= '1";
when recv_wait => null;
when res_data_load =>
res_index_inc <= '1"';
res _data en <= '1';
when data_token_wait =>
data_index_reset <= '1';
when data_read_wait => null;
when data_read load =>
data_index_inc <= '1";
-- only enable output when we have not yet reached

the CRC
if data_index_reg <= data_index_max - 2 then
data_out_en <= '1";

end if;

when data_token_load =>
data_index_reset <= '1';
send_data_src <= src_data_token;
send_new_data <= '1';

when data_write_wait => null;

when data_write_load =>
data_index_inc <= '1";
send_new_data <= '1';
send_data_src <= src_data_in;

when data_response wait => null;

when busy wait => null;

when done => cmd_end <= '1';

when sd_error =>
error <= '1"';
cmd_end <= '1"';

end case;
end process;

state update _proc: process(sclk) begin

if rising_edge(sclk) then
state <= next_state;

81

end if;
end process;

end behavior;

sd_send.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©8/13/2018 08:04:27 PM
-- Design Name:

-- Module Name: sd _send - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Artix 7 - Basys 3
-- Tool Versions:

-- Description:

-- Dependencies:

-- Revision:
-- Revision .01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std _logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_send is
generic(bits: positive := 8);
port(clk: in std logic;

82

data: in std logic vector(bits - 1 downto ©); -- data to
send to card

new_data: in std_logic; -- data is registered on rising edge
when asserted

done: out std logic; -- when asserted, the previously
registered data has been processed

spi mosi: out std logic;

spi_cs: out std logic := '1");
end sd_send;

architecture behavior of sd send is
-- number of bits required to represent the bits parameter
constant BITS_BITS: positive := integer(ceil(log2(real(bits))));

component down_counter is
generic(bits: positive := 4);
port(clk: in std logic;
k: in std logic vector(bits - 1 downto @); -- preset

value

CE: in std_logic := '1'; -- count enable

preset: in std logic := '@'; -- assert to set the
counter to R

y: out std logic vector(bits - 1 downto ©); -- counter
output

TC: out std logic); -- terminal count

end component;

signal data_reg, shift_reg: std logic_vector(bits - 1 downto ©)
:= (others => "1'");

-- asserted when the last bit 1s shifted
signal last_bit: std logic;

-- asserted when data has arrived but has not been moved to shift
register

signal new_data_reg: std logic := '0';
begin

83

spi_mosi <= shift_reg(bits - 1);
done <= last_bit;

process(clk) begin
if falling edge(clk) then
-- shift or move data from data_reg
if new_data_reg = '1' and last_bit = '1' then
shift_reg <= data_reg;
new_data_reg <= '0';
-- assert CS when starting to transfer
-- CS 1is never deasserted, because all the SD cards I
have
-- tested do not require 1it, although some cards
supposedly do
-- require it before each command. The CS signal 1is
used to
-- frame the start of a byte, and the framing is
maintained as
-- long as the clock does not glitch
spi_cs <= '0';
else
shift_reg <= shift_reg(bits - 2 downto ©0) & '1°';
end if;

-- copy data input into register
if new_data = '"1' then
data_reg <= data;
new_data _reg <= '1°;
end if;
end if;
end process;

shift_counter: down_counter
generic map(bits => BITS_BITS)
port map(clk => clk,
k => std _logic vector(to_unsigned(bits - 1,
BITS_BITS)),
TC => last _bit);

end behavior;

sd_recv.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©8/13/2018 08:04:27 PM
-- Design Name:

-- Module Name: sd _send - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Artix 7 - Basys 3
-- Tool Versions:

-- Description:

-- Dependencies:
-- Revision:

-- Revision ©.091 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std logic _1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd _recv is
generic(bits: positive := 8);
port(clk: in std logic;

data: out std logic vector(bits - 1 downto ©); -- data to

send to card

84

85

new_data: out std_logic; -- asserted when new data available
on next rising edge, cleared after get data asserted
spi miso: in std logic := '0");

end sd_recv;

architecture behavior of sd_recv is
-- number of bits required to represent bits - 1
constant BITS_BITS: positive := integer(ceil(log2(real(bits))));

component down_counter 1is
generic(bits: positive := 4);
port(clk: in std_logic;
k: in std _logic vector(bits - 1 downto 0); -- preset

value

CE: in std logic := '1'; -- count enable

preset: in std_logic := '@'; -- assert to set the
counter to R

y: out std logic vector(bits - 1 downto ©); -- counter
output

TC: out std_logic); -- terminal count

end component;

signal shift_reg: std logic vector(bits - 1 downto @) := (others
=> '1");

-- asserted when the last bit is shifted
signal last_bit: std logic;
begin

new_data <= last_bit;

process(clk) begin
if rising_edge(clk) then
-- start shifting
if last_bit = '1' then
data <= shift_reg;
end if;

86

shift_reg <= shift_reg(bits - 2 downto ©) & spi_miso;
end if;
end process;

shift_counter: down_counter
generic map(bits => BITS_BITS)
port map(clk => clk,
k => std logic_vector(to_unsigned(bits - 1,
BITS_BITS)),
TC => last _bit);

end behavior;

down_counter.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©7/23/2018 10:04:40 PM

-- Design Name:

-- Module Name: down counter - behavior

-- Project Name: down_counter

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: A generic counter implementation that only counts
down.

-- Dependencies:

-- Revision:

-- Revision ©.01 - File Created
-- Additional Comments:

87

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity down_counter is

generic(bits: positive := 4);
port (clk: in std logic;
k: in std_logic_vector(bits - 1 downto 0); -- preset value
CE: in std_logic := 'l'; -- count enable
preset: in std_logic := '@'; -- assert to set the counter
to R
y: out std_logic_vector(bits - 1 downto ©); -- counter
output
TC: out std logic); -- terminal count

end down_counter;

architecture behavior of down_counter is

signal uy: unsigned(y'range) := (others => '0');
begin

y <= std_logic_vector(uy);

TC <= '1" when uy = 0 else '0';

process(clk) begin
if rising_edge(clk) then
if preset = '1" then
uy <= unsigned(k);
elsif CE = '1' then
-- wrap around to R
if uy = @ then
uy <= unsigned(k);
else
uy <= uy - 1;
end if;
end if;
end if;
end process;
end behavior;

88

clock_divider.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©8/11/2018 08:38:05 PM
-- Design Name:

-- Module Name: clock_divider - behavior
-- Project Name:

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

-- Dependencies: down_counter.vhd

-- Revision:
-- Revision .91 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std logic _1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

library UNISIM;
use UNISIM.VComponents.all;

entity clock _divider is
generic(divider: integer);
port(mclk: in std logic;
dclk: out std logic);
end clock_divider;

architecture behavior of clock_divider is

constant COUNTER_VALUE: integer := divider / 2 - 1;
constant COUNTER_BITS: integer :=

integer(ceil(log2(real (COUNTER_VALUE + 1))));
signal dclk_unbuf: std logic := '@'; -- unbuffered clock
signal dclk_toggle: std logic;

component down_counter 1is
generic(bits: positive := 4);
port (clk: in std logic;
k: in std _logic vector(bits - 1 downto ©); -- preset

value
CE: in std_logic := 'l'; -- count enable
preset: in std _logic := '@'; -- assert to set the
counter to R
y: out std logic vector(bits - 1 downto ©); -- counter
output
TC: out std_logic); -- terminal count
end component;
begin

assert (COUNTER_VALUE + 1) * 2 = divider report "Divider must be
a multiple of two";

counter: down_counter
generic map(COUNTER_BITS)
port map(clk => mclk,
k => std logic vector(to_unsigned(COUNTER_VALUE,
COUNTER_BITS)),
TC => dclk_toggle);

process(mclk) begin
if rising_edge(mclk) then
if dclk_toggle = '1' then
dclk _unbuf <= not(dclk_unbuf);
end if;
end if;

89

end process;

-- The BUFG component puts the signal onto the FPGA clocRking

network
dclk_buffer: BUFG
port map(I => dclk_unbuf,
0 => dclk);
end behavior;

sync.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: 08/12/2018 10:21:29 PM
-- Design Name:

-- Module Name: sync - behavior

-- Project Name: VoiceRecorder

-- Target Devices:

-- Tool Versions:

-- Description: Dual flop synchronizer

-- Dependencies:
-- Revision:

-- Revision .01 - File Created
-- Additional Comments:

library IEEE;

use IEEE.std _logic_1164.all;
use IEEE.math_real.all;

use IEEE.numeric_std.all;

90

entity sync is
port(clk: in std logic;
input: in std _logic;
output: out std logic);
end sync;

architecture behavior of sync is

signal sync_1: std logic := '@';

signal sync_2: std logic := '@';
begin

-- synchronization

sync_proc: process(clk) begin
if rising_edge(clk) then
sync_1 <= input;
sync_2 <= sync_1;
end if;
end process;

output <= sync_2;

end behavior;

button.vhd

-- Company: ENGS 31, 18X
-- Engineer: Ben Wolsieffer

-- Create Date: ©8/12/2018 10:21:29 PM
-- Design Name:

-- Module Name: button - behavior

-- Project Name:

-- Target Devices:

-- Tool Versions:

-- Description: Button synchronizer, debouncer and monopulser

91

-- Dependencies: down_counter.vhd
-- Revision:

-- Revision .01 - File Created
-- Additional Comments:

92

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.math_real.all;

use IEEE.numeric_std.all;

entity button is

generic(count: positive := 10000);

port(clk: in std logic;
input: in std _logic;
output: out std logic);
end button;

architecture behavior of button is

constant DEBOUNCE_BITS: positive :

+1))));

component sync is
port(clk: in std logic;
input: in std logic;

output: out std logic);

end component;

component down_counter 1is

generic(bits: positive := 4);

port (clk: in std_logic;

k: in std_logic vector(bits - 1 downto 0);

value

integer(ceil(log2(real(count

-- preset

counter to R

output

93

CE: in std_logic := 'l'; -- count enable

preset: in std_logic := '@'; -- assert to set the

y: out std _logic_vector(bits - 1 downto ©); -- counter
TC: out std_logic); -- terminal count

end component;

-- synchronization
signal sync_out: std logic;

-- debouncing

signal debounce_output: std logic := '9';
signal not_changing: std logic;

signal change_trigger: std logic;

-- monopulsing
signal mp_reg: std logic vector(l downto @) := "@0";
begin
-- synchronization
sync_map: sync
port map(clk => clk,

input => input,
output => sync_out);

-- debouncing

not_changing <= '1' when sync_out = debounce_output else '0';
debounce_counter: down_counter

generic map(bits => DEBOUNCE_BITS)

port map(clk => clk,

k => std _logic_vector(to_unsigned(count,

DEBOUNCE_BITS)),

preset => not_changing,
TC => change_trigger);

process(clk) begin
if rising_edge(clk) then

if change_trigger = '1' then

debounce_output <= sync_out;

end if;
end if;
end process;

-- monopulsing
monopulser: process(clk, mp_reg, debounce_ output)

begin

if rising_edge(clk) then
mp_reg <= debounce_output & mp_reg(l);
end if;

output <= mp_reg(1l) and not(mp_reg(9));
end process monopulser;

end behavior;

VoiceRecorder.xdc

Constraint file for the voice recorder

Clock signal
#Bank = 34, Pin name = CLK, Sch name = CLK160OMHZ

set_property
set_property
create_clock
10.000} -add

LEDs

set property
set_property
set_property
set_property
set property
set_property
set_property

PACKAGE_PIN W5 [get ports mclk]

IOSTANDARD LVCMOS33 [get ports mclk]

-period 20.000 -name sys_clk _pin -waveform {0.000
[get_ports mclk]

PACKAGE_PIN U16 [get ports {record led}]
IOSTANDARD LVCMOS33 [get ports {record_ led}]
PACKAGE_PIN E19 [get ports {play led}]
IOSTANDARD LVCMOS33 [get ports {play led}]
PACKAGE_PIN U19 [get ports {f_play led}]
IOSTANDARD LVCMOS33 [get ports {f_play led}]
PACKAGE_PIN V19 [get ports {s_play led}]

94

set_property
set_property
set property
set_property
set_property
set_property
set property
set_property
set_property
set_property
set_ property
set_property
set_property
set_property
set_ property
set_property
set_property
set_property
set_ property
set_property
set_property
set_property
set_ property
set_property
set_property

#Buttons

##Bank = 14,
hame = BTNU
set_property
set property

#Bank = 14, Pin name = ,

set_property
set_property
##Bank = 14,

TIOSTANDARD LVCMOS33 [get ports {s_play led}]
PACKAGE_PIN W18 [get ports {data_leds[0]}]
IOSTANDARD LVCMOS33 [get ports {data leds[©@]}]
PACKAGE_PIN U15 [get ports {data_leds[1]}]
TIOSTANDARD LVCMOS33 [get ports {data_leds[1]}]
PACKAGE_PIN U14 [get ports {data_leds[2]}]
IOSTANDARD LVCMOS33 [get ports {data leds[2]}]
PACKAGE_PIN V14 [get _ports {data_leds[3]}]
TIOSTANDARD LVCMOS33 [get ports {data_leds[3]}]
PACKAGE_PIN V13 [get ports {data_leds[4]}]
IOSTANDARD LVCMOS33 [get ports {data leds[4]}]
PACKAGE_PIN V3 [get_ports {data_leds[5]}]
TIOSTANDARD LVCMOS33 [get ports {data_leds[5]}]
PACKAGE_PIN W3 [get ports {data_leds[6]}]
IOSTANDARD LVCMOS33 [get ports {data leds[6]}]
PACKAGE_PIN U3 [get_ports {data_leds[7]}]
TIOSTANDARD LVCMOS33 [get ports {data_leds[7]}]
PACKAGE_PIN P3 [get ports {data_leds[8]}]
IOSTANDARD LVCMOS33 [get ports {data leds[8]}]
PACKAGE_PIN N3 [get_ports {data_leds[9]}]
TIOSTANDARD LVCMOS33 [get ports {data_leds[9]}]
PACKAGE_PIN P1 [get ports {data leds[10]}]

IOSTANDARD LVCMOS33 [get ports {data leds[10]}]

PACKAGE_PIN L1 [get _ports {data_leds[11]}]

IOSTANDARD LVCMOS33 [get ports {data leds[11]}]

Pin name = ,

PACKAGE_PIN T18 [get ports {play btn}]
IOSTANDARD LVCMOS33 [get ports {play btn}]
Sch name = BTNL

PACKAGE_PIN W19 [get ports {record btn}]
TOSTANDARD LVCMOS33 [get ports {record btn}]
Pin name = ,

Sch name = BTNR

set_property
set_property

PACKAGE_PIN T17 [get ports {f_play btn}]
TOSTANDARD LVCMOS33 [get ports {f _play btn}]

Sch

95

96

##Bank = 14, Pin name = , Sch
hame = BTND

set_property PACKAGE_PIN U17 [get ports {s_play btn}]

set _property IOSTANDARD LVCMOS33 [get ports {s_play btn}]

##Pmod Header JA

##Bank = 15, Pin name = IO_LIN_ToO_ADON_15, Sch
hame = JA1

set_property PACKAGE_PIN J1 [get ports {ad_spi_cs}]

set_property IOSTANDARD LVCMOS33 [get ports {ad_spi _cs}]

##Bank = 15, Pin name = IO _L16N_T2 _A27 15, Sch
name = JA3

set_property PACKAGE_PIN J2 [get_ports {ad_spi_sdata}]

set_property IOSTANDARD LVCMOS33 [get ports {ad_spi_sdata}]

##Bank = 15, Pin name = IO _L16P_T2 A28 15, Sch
hame = JA4

set_property PACKAGE_PIN G2 [get_ports {ad_spi_sclk}]

set_property IOSTANDARD LVCMOS33 [get ports {ad_spi_sclk}]

##Pmod Header IJB

#Bank = 15, Pin name = IO L15N_T2 DQS ADV B 15, Sch
name = JB1

set_property PACKAGE_PIN Al4 [get ports {sd_spi cs}]

set _property IOSTANDARD LVCMOS33 [get ports {sd _spi cs}]

###Bank = 14, Pin name = IO L13P T2 MRCC 14, Sch
name = JB2

set property PACKAGE_PIN Al1l6 [get ports {sd _spi mosi}]

set _property IOSTANDARD LVCMOS33 [get ports {sd spi mosi}]

###Bank = 14, Pin name = I0 L21IN T3 DQS A06 D22 14, Sch
name = JB3

set_property PACKAGE_PIN B15 [get ports {sd_spi miso}]

set _property IOSTANDARD LVCMOS33 [get ports {sd spi miso}]

###Bank = CONFIG, Pin name = IO L16P_T2 CSI B 14, Sch name
= JB4

set property PACKAGE_PIN B16 [get ports {sd spi sclk}]

set _property IOSTANDARD LVCMOS33 [get ports {sd spi sclk}]

97

##Bank = 14, Pin name = IO _L24P T3 A@1 D17 14, Sch
name = JB9

set _property PACKAGE_PIN C15 [get ports {sd_cd}]

set_property IOSTANDARD LVCMOS33 [get ports {sd_cd}]

##Bank = 14, Pin name = IO _L19N_T3 _A@9 D25 VREF_14, Sch
name = JB10

set _property PACKAGE_PIN C16 [get ports {sd _wp}]

set_property IOSTANDARD LVCMOS33 [get ports {sd wp}]

##Pmod Header JXADC
##Bank = 15, Pin name = IO L9P T1 DQS AD3P 15, Sch
name = XADC1 P -> XAl _P
set _property PACKAGE_PIN J3 [get ports {da_spi cs}]
set _property IOSTANDARD LVCMOS33 [get ports {da_spi cs}]
##Bank = 15, Pin name = IO L8P _T1 AD10P 15, Sch
name = XADC2 P -> XA2_P
set_property PACKAGE_PIN L3 [get ports {da_spi_sdata}]
set _property IOSTANDARD LVCMOS33 [get ports {da_spi_sdata}]
##Bank = 15, Pin name = IO L16P T1 AD11P 15,
Sch name = XADC4 P -> XA4_P
set_property PACKAGE_PIN N2 [get ports {da_spi_sclk}]
set _property IOSTANDARD LVCMOS33 [get ports {da_spi_sclk}]

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]
set _property CONFIG_MODE SPIx4 [current _design]

set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]

set _property CONFIG_VOLTAGE 3.3 [current_design]
set_property CFGBVS VCCO [current_design]

Appendix F - Resource utilization

Table F1. Slice Logic

98

Site Type Used Fixed Available Util%
Slice LUTs 935 0 20800 4.50
LUT as Logic 935 0 20800 4.50
LUT as Memory 0 0 9600 0.00
Slice Registers 425 0 41600 1.02
Register as Flip Flop 425 0 41600 1.02
Register as Latch 0 0 41600 0.00
F7 Muxes 75 0 16300 0.46
F8 Muxes 0 0 8150 0.00
Table F2. Memory

Site Type Used Fixed Available Util%
Block RAM Tile 44 0 50 88.00
RAMB36/FIFO* 44 0 50 88.00
RAMB36E1 only 44

RAMBI18 0 0 100 0.00

Table F3. Primitives

99

Ref Name Used Functional Category
FDRE 412 Flop & Latch
LUT6 405 LUT

LUT4 284 LUT

LUTS 219 LUT

LUT3 138 LUT

CARRY4 82 CarryLogic
MUXF7 75 MuxFx

LUT2 61 LUT
RAMB36E1 44 Block Memory
LUTI1 40 LUT

OBUF 24 10

FDSE 9 Flop & Latch
IBUF 8 (0]

FDCE 4 Flop & Latch
BUFG 2 Clock

100

Appendix G - Residual warnings

[Synth 8-3331] design sd_driver has unconnected port sd_cd
[Synth 8-3331] design voice_recorder has unconnected port sd_cd

These warnings occur because the SD card detect pin is mapped in the constraint file and the top
level file, but was never used due to time constraints.

[Synth 8-3936] Found unconnected internal register 'ocr_reg reg' and
it is trimmed from '32' to '31' bits. ["sd/sd _driver.vhd":195]
[Synth 8-3332] Sequential element (sd_cmd _map/res_data_reg[31]) is
unused and will be removed from module sd_driver.
[Synth 8-3332] Sequential element (sd_cmd_map/res_data_reg[29]) is
unused and will be removed from module sd_driver.

.. elided ...
[Synth 8-3332] Sequential element (sd_cmd _map/res_data_reg[13]) is
unused and will be removed from module sd_driver.
[Synth 8-3332] Sequential element (sd_cmd _map/res_data reg[12]) is
unused and will be removed from module sd_driver.

These warnings occur because the entire SD Operating Conditions Register is saved to a register,
but the code only uses one bit from it.

[Synth 8-3332] Sequential element (csd_reg reg[125]) is unused and
will be removed from module sd_driver.
[Synth 8-3332] Sequential element (csd reg reg[124]) is unused and
will be removed from module sd_driver.

. elided ...
[Synth 8-3332] Sequential element (csd_reg reg[19]) is unused and will
be removed from module sd_driver.
[Synth 8-3332] Sequential element (csd _reg reg[18]) is unused and will
be removed from module sd_driver.

These warnings occur because the entire SD Card Specific Data register is saved, but only a
portion of it is used.

101

Appendix H - Memory map

The block RAM on the FPGA was used as a circular buffer that stored audio samples as they
were transferred between the audio controller and SD driver. Each element was 12 bits wide, the
size of a sample, and the size of the RAM was 131,072 (2'), the largest power of two that fits in

the available block RAM.

Appendix I - Simulation waveforms®

102

Name L |22 us 2w | s, |28 us 3o us, zus, baus 36 us, Pays, . lwus lazus,
W sclk 0 | D N N N OGN N N N BN
1 take_sample 0 |] | | |
W spi_sdata 0 T 1 | | |
PR 0 B _I__I_I_J_l [T EEEE N J—L_ L e e e mel e e e W
8 spi_cs 1 m] | —
#ad_ 000
1 ad_ 0 I_I
Eere i B I M :XIX: I
W sam o T) = (= X X . X j:: T s
8 sclk 1000000 ps 1980909 _ps
W samplin 25 e
W TxDatal14.0] 7069 w0
New data ready signal
Figure I1. Pmod ADI1 simulation waveform
Name Value ous | sws jwwys 0 sy 0 lwys |mys 0 |smuys Jes ps boys | swys | fmmys |ssuws
1| da_data[11:0] aab | b oo
2 tick_sample u ™ 1
W sclk 0
W spi_data U N w e
12 spi_sclk 0 |
W spi_cs 1 R Y J7 | \ .
4 sclk_period 1000000 ps N\ 1000000 _ps A
@ TxData[11:0] EEH AN s i
12 curr_state waits walts .. \ shift waits I\ shift waits
1 next_state waits walts ‘\ shift waits l\“ shift waits

Triggers new sample to be written

Figure I2. Pmod DA2 simulation waveform

3 To see enlarged versions of these diagrams, click on the image.

Write another sample (OxCFF)

https://www.benwolsieffer.com/engs31/pmod_ad1_tb_simulation.png
https://www.benwolsieffer.com/engs31/pmod_da2_tb_simulation.png

Name
W clk
W rec
W[piay
1 done
1 sd_done
18 take_sample

B ad_dat:

W da_new_sample
B8 index_audio[7-0]
B index_sd[7.0

14 ram_wr

B9 ram_addi[3.0)

> B ram_di
B8 ram_dout[11:0]
W da_en

W state

18 next_state

stidle
st idle

103

1}
H—
[o M e o
N o
LT I

Be FoF K KaL Ka N e

NN
5 |

n

t lewjj_! 1

XXX XD
aag !
o /
R P \UUﬂUUUUUUUUU\UﬂﬂL
! B st_play J_X_}K_“J_|_|IF
i T

Figure I5. Simulation waveform for communication between sd_send and sd_recv components.

Recording Playback
Buffer empty
Figure I3. Audio controller simulation waveform
Name Value A 15 us las
1 play_bin 0
W _play_bin 0 1
14 s_play_nhin 0 [
W audio_done 0 |
1 sd_done 0 = 7 =l | -
14 rec_bin 0 (Il
W play_out 0 [| e
W play_led 0 |
1 rec_out 0
10 rec_led 0 [| |
1§ sclk_period 1000000 ps) 1000000 ps
> W tick_sample_div[9:0) Ded 07z 4 258 { foes
14 curr_state idle rec done_wait idle X dane_wait idle fasrt_play A slow_play dle
14 nexl_state idle rec done_wait 0e3 Niae sy % done_wait idle Fast_play ¥ X slow_play e
i
Record, end with button Play, end with button Fast play, end with audio Slow play, end with SD
done signal done signal
Ignore record button while playing
Figure 14. UI controller simulation waveform
Name Value o ns |58 ns |18 ns |15 ns |z80 ps 8 ns 388 ns Jeae_ps a5 |58 ns
W clk 1
> & send_data[7 0] a9 = B 5
W send_new_data [= =1
» B recv_datal7 0] uu w] i 3 NG 4 ¥)4 S ¥)
1 racv_new_data 1 L il |k i LN | L =l = |
14|spi_sdata 1 ‘ |] / I .‘ |
Send byte Receive byte Send another byte Receive byte

https://www.benwolsieffer.com/engs31/audio_controller_tb_simulation.png
https://www.benwolsieffer.com/engs31/UI_controller_tb_simulation.png
https://www.benwolsieffer.com/engs31/sd_send_recv_tb.png

Name
Wk
W sd_spi_mos
1 sd_spi_miso
W res_11[7:0)

W res_data[31.0)
1 state

1 next_state

14 send_t

& res_inde

Value

o
00000000
recy_wail
recy_wait
sre_cmd

Command index

104

ao0006T T

o %

o P

9

res_wait |
res_wait
sre_cmd
a8 o] 87 ff [
4 B8 9 [
{ 1o 7 \ X asommmn |

Send command

Response status

Command argument

Figure 16. SD command controller simulation waveform

Receive response

Response data

Name
ek |
Wrec
W play
W done 0
W error 0 |
index_au 00000000 QOGLGGEE QOOO0ZES
index_sd[31:0 200000 4 000006000 b 99008108 06060606
14 sd_spi_mos ! LR [) I I 1T =
1 so_spl_mise 1 TTTTITITH T T Tl 1l 1
B ram_wr_s 0
00000
000
oou
uu
W send_new_data 0
W state starl b ean_sanple: ¥ " read_sanples
W next_state init " o ead_sanples b read_sanples
> B cmd[5:0] [} 11 v 11 ‘\ b FE & s
> B emd_arg! 00000000 005600 00002000 % i aaaaml/‘)
> B res_r1[7:0] 0 ¥ o a2 o8
00000000 & wFrsett
uuuuuuuY
00000000 i
Initialization Playback Recording
Read first sector (length) Read datay sechore
Figure I7. SD driver simulation waveform
e St A o |se s, |zsans, a0, e s, [rom ns, . Jsegns, | s _ |sens, | |ssans, Jsea,ns
8 clic 1 il
W input 0 I | J L LT I T
18 sync_out a - T 1 I LT | | I I
W[gebouncs 0 | T I | | ——
W output 0 1

Synchronized output Debounced output

Bouncy input

Figure I8. Button synchronizer, debouncer and monopulser simulation waveform

https://www.benwolsieffer.com/engs31/sd_cmd_tb.png
https://www.benwolsieffer.com/engs31/sd_driver_tb_simulation.png
https://www.benwolsieffer.com/engs31/button_tb_simulation.png

Name Value

105

o us |2 us &, us |5, us s us |18 us |1z us |14 us |1e
T
18 delk 0 I [

Figure 19. Clock divider simulation waveform

https://www.benwolsieffer.com/engs31/clock_divider_tb_simulation.png

106

Appendix J - Computer program

Python script for writing an audio file to an SD card in the format expected by the voice

recorder.

#!/usr/bin/env python3

import
import
import
import

SECTOR_
DATA_OFFSET

sys
soundfile as sf
struct

numpy as np

SIZE

512
8192 * SECTOR_SIZE

def main():

if

len(sys.argv) < 3:
print(“usage: {} audio_file sd_dev".format(sys.argv[0]),

file=sys.stderr)

sys.exit(1)

audio_file_name = sys.argv[1]

sd_

name = sys.argv[2]

with sf.SoundFile(audio file name, 'r') as f:

print(f.format_info)
print(f.extra_info)
print(f.subtype_info)

assert f.samplerate == 44100
assert f.subtype == 'PCM_16'

with open(sd_name, 'rb+') as sd:
sd.seek(0)
Index of end of data (relative to offset)
sd.write(struct.pack('<I', len(f) - 1))
sd.seek (DATA_OFFSET)

107

while f.tell() < len(f):

data = f.read(frames=4096, dtype="intl6")

mono_data = np.mean(data, axis=1).astype(np.int32)

unsigned_data = (mono_data + 32768).astype(np.uintl6)

for sample in unsigned_data:
sd.write(struct.pack('<H', sample))

