

1

Voice Recorder

Ben Wolsieffer and Afia Semin
ENGS 31 - 18 X

2

Abstract

This project is a voice recorder that captures audio from an onboard microphone and

plays it back through a speaker. Audio data is stored on an SD card, allowing for long recording

times and long-term storage. It is also possible to write an audio file to the SD card from a

computer and play it back using the voice recorder. The recorder was implemented on a Xilinx

Artix-7 FPGA using the Digilent Basys 3 development board, as a well as a variety of Digilent

Pmods.

3

Table of Contents

1. Introduction 4

2. Design solution 4
2.1. Specifications 4
2.2. Operating Instructions 4
2.3. Theory of Operation 5
2.4. Construction and Debugging 10

3. Evaluation 11

4. Conclusions 12

5. Acknowledgments 12

6. References 13

Appendix A - Annotated front panel 14

Appendix B - Block diagrams 15

Appendix C - State diagrams 22 1

Appendix D - Parts list 27

Appendix E - VHDL code and constraints 28

Appendix F - Resource utilization 98

Appendix G - Residual warnings 100

Appendix H - Memory map 101

Appendix I - Simulation waveforms1 102

Appendix J - Computer program 106

1 To see enlarged versions of the diagrams in this appendix, click on the images.

4

1. Introduction

The primary objective of this project was to create a digital voice recorder that was

capable of recording audio from a microphone, storing it and then playing it back through a

speaker. An additional goal after accomplishing the primary goal was to store the audio on an SD

card, allowing much longer recording times.

2. Design solution

2.1. Specifications

This system is a voice recorder that records audio from an onboard microphone and

stores it onto an SD card. It is also capable of playing back audio from the SD card. The voice

recorder uses the onboard LEDs and pushbuttons of the Basys 3 for its user interface. It uses a

Pmod MIC3 connected to port JA for audio input, and a Pmod DA2 connected to port JXADC to

generate an analog audio signal. The analog signal is passed through an adapter board to a Pmod

AMP2 audio amplifier, which drives a speaker. Finally, an SD card socket (Pmod SD) is

attached to port JB. A photograph of this setup is shown in Appendix A. The connections and

internal pin mappings between the FPGA and Basys 3 ports are shown in Figure B1.

2.2. Operating Instructions

To operate the system, the Pmods must be connected as described in the specifications

section and shown in the front panel diagram (Appendix A). An SD card must be inserted in the

5

socket before the system is powered on. If the SD card is removed while the system is on, the

card must be reinserted and the system must be restarted before it can be used. To begin a

recording, press the record button. To stop the recording, press the record button again. The

recording can be played back at a chosen speed using any of the play buttons. The recording will

play until it is finished, or the same button is pressed again. The row of lights along the bottom

of the board allows the user to determine the current state of the system. The SD card driver

respects the write protect switch on the SD card. If the record LED does not turn on after the

record button is pressed, make sure the write protect switch is in the unlocked position.

2.3. Theory of Operation

The main components of the system are the UI controller, the audio controller, and the

SD card driver, as well hardware interface components for the A/D and D/A convertors (their

connections are shown in Figure B2).

Audio is recorded with a Pmod MIC3, which uses a Texas Instruments ADCS7476 A/D

convertor, and audio is played using a Pmod DA2 with a Texas Instruments DAC121S101 D/A

convertor. The driver for the Pmod MIC3 is identical to the one used in the last two labs, except

for the addition of a done signal that is asserted as the last bit is shifted in. The Pmod DA2 driver

is similar to the A/D driver, except it is a parallel to serial shift register instead of a serial to

parallel shift register (see Figure B3 and C1).

The A/D and D/A drivers are connected by the audio controller. The audio controller is a

finite state machine (described in Figure C2) that outputs a take sample pulse at the audio sample

rate (specified by the UI controller). This signal is continuously passed to the A/D driver, even

during playback, but it is gated by an enable signal before being passed to the D/A driver to

6

prevent unwanted noises from being played by the D/A while recording. The audio controller is

also responsible for writing the A/D and D/A data to and from the RAM buffer. It receives the

current position in the RAM buffer from the SD card driver and uses it to decide whether there is

enough data in the circular buffer to continue playback, and also whether the buffer is full while

recording (see Figure B4 for details of the bounds checking). The circular buffer and bounds

checking are implemented using a monotonically increasing counter that represents the number

of samples that have been played or recorded. The SD driver has its own version of this counter,

which keeps track of how many samples it has read or written. The actual position in the RAM is

the sample index modulo the RAM size. The RAM size is configured to be a power of two (in

this case, 131,072 or 217), which turns the modulus operation into an efficient bit mask. The

sample index is used in the comparison operations, which makes it unnecessary to explicitly

determine when the circular buffer wraps.

Data in the circular buffer is transferred to an SD card for permanent storage. SD cards

have two modes of communication, a native high-performance protocol using four data lines,

and a simpler SPI mode. Communication is symmetrical, with both the master and slave (SD

card) shifting out data on the falling edge of the clock and latching data on the rising edge. The

master initiates all communication.

In this design, the SD card driver has the minimum possible interaction with the audio

components of the system. The SD driver consists of three levels of components, starting at the

lowest level with a pair of components that constantly send and receive from the SPI bus in 8-bit

increments. The SD protocol operates on the byte level, so the smallest unit the higher-level

components of the driver will have to work with is one byte (8 bits). The sending and receiving

7

components operate as parallel to serial and serial to parallel shift register convertors,

respectively. These components are always shifting, and they assert a signal as the last bit is

being shifted out or in. In addition, the sending component has a signal that causes an input to be

stored into the parallel register. When there is no data to send, the bus is held high (ones are

shifted out), which indicates that it is idle. The SD card also holds its master-out-slave-in

(MOSI) line high when idle, making it possible to detect traffic on the bus by waiting for a

received byte that is not equal to 0xFF (the first byte of any transfer is guaranteed to have at least

one zero). The sending component is also responsible for asserting chip select (CS) when the

first data is sent. This is done at such a low level because CS serves as the framing signal for the

data, and must occur as the first bit is sent. The higher-level components of the driver do not

operate at the bit level, making it difficult for them to accomplish this precise timing. In this

implementation, the CS signal is never deasserted, because the SD cards tested were able to

maintain their framing without it. There is anecdotal evidence (web comments) that some cards

require CS to be deasserted and asserted between commands. The detailed design of these

components is shown in Figures B6 and B7.

Above the sending and receiving components is the command driver, which executes

commands and returns their responses. It is implemented as a finite state machine (FSM), fully

described in Figure C5. When a start signal is asserted, the state machines registers a command

index and argument, sends it to the card, waits for a response and then asserts a done signal.

Most commands have a short response ranging from 1 byte to 5 bytes. The first byte always has

the same format, and indicates whether an error occurred. Certain commands, in particular those

that read from the card, send a second response that contains the data that was read. While the

8

driver returns the first response as a 32 bit signal, the second response is returned as a single byte

and an index that increments as the response is read. This makes it easy to directly map this data

into RAM. Data writes are performed using a similar mechanism in the opposite direction, with

the master sending a data block after receiving the first response from the card.

The highest level of the SD card driver manages the sequencing of commands during

initialization, as well as the transfer of data between the audio RAM and the SD command

driver. The SD card driver is also an FSM, with many states named after SD command

mnemonics (described in Figure C5, the state diagram for the SD card driver, and B8, which is

an abbreviated version of the block diagram for the command controller and the card driver; a

more complete block diagram for this part of the project is not available due to complexity and

time constraints). The SD card standard has gone through several revisions, and therefore a fully

compatible driver must perform different commands and checks depending on which version of

the standard a particular card implements. To make implementation simpler, only SD version 2

and greater cards were supported. In addition, only SDHC and SDXC cards (which use sector

addressing) were available to test, so support for standard capacity SD cards (which use byte

addressing) is only theoretical. Data transfers are performed using single block read and write

commands. While using multiblock data transfer commands would have been more efficient,

there was not sufficient time to implement them. This is particularly true for writing, as a naive

single block writing algorithm suffers from the FLASH write amplification issue. FLASH

memory must be erased before it can be written, and the minimum size that can be erased is

much larger than the minimum size that can be written. Therefore, to change a single byte, it is

necessary to buffer the entire erase block, erase it and then write the data back with the single

9

byte changed. This reduces performance and can cause premature failure of the FLASH device

because FLASH can only withstand a limited number of erase cycles. Multiblock writes work

around this problem by making it possible for the SD card firmware to buffer many writes before

erasing a block. A possibly simpler solution is also available, because the SD protocol allows

sectors to be explicitly erased. In the case of the voice recorder, a new recording overwrites an

old recording, making it possible to preemptively erase a large block ahead of the recording. The

SD driver implements these commands, erasing 4 MiB blocks ahead of the current recording

position. It is possible to determine the exact erase block size of a particular card, but this was

not done due to time constraints.

The driver implements minimal error checking and recovery. Error codes or unexpected

values in command responses are detected, but no attempt is made to recover. The driver simply

stops in the case of errors. Timeouts are not implemented, meaning that if a card is disconnected

in the middle of a command, the driver will hang. The SD protocol optionally uses a cyclic

redundancy check (CRC) to verify the integrity of commands and data, but this is not

implemented by this driver beyond the first few initialization commands that require it. Rather

than calculating a CRC, hardcoded values are used because the contents of the commands are

fixed.

The SD driver interacts with the audio components through the block RAM as well as an

index that indicates which sample of the audio file is currently being recorded or played. The SD

driver only writes during recording when there are at least 512 bytes (one sector) buffered in the

RAM, and only reads during playback when there are at least 512 bytes free in the circular

buffer.

10

The high-level state of the system is controlled by the user interface (UI) controller. It

takes the debounced monopulsed buttons as inputs and produces record and play signals as

outputs. In addition, it has two inputs from the audio controller and SD driver that indicate that

they are done (either after the recording or after playback was stopped manually, or the end of

the file was reached). If the UI controller is in the idle state and one of the buttons is pressed, it

transitions to the corresponding state, and asserts either the play or record output. It remains in

that state until the same button is pressed again, or either the audio controller or SD controller

indicates that it is done. In either case, it waits for both done signals to be asserted before

returning to the idle state. The audio controller and SD driver also wait for their counterparts’

done signals, which synchronizes the three major components of the system. To implement the

fast and slow play capabilities, the UI controller outputs a signal that controls the speed of the

take sample pulse. The full state diagram and block diagram can be seen in Figures C3 and B5,

respectively.

2.4. Construction and Debugging

The first components that were designed and implemented were the drivers for the A/D

and D/A convertors. The A/D convertor driver was already written for the last few labs, so it was

simply modified to include a done signal that is asserted as the last bit is shifted in. Once these

components were written and tested in simulation (see Appendix I for simulation waveforms), a

simple demo system was created that simply forwarded data from the A/D to the D/A. This

worked on the first try, except for an issue with a different pin mapping between the Pmod AD1

and the Pmod MIC3. The next step was to implement the system that would accomplish the first

design goal. This was the design presented at the design review. This system worked with few

11

issues, other than a strange problem where the Pmod ports of the Basys 3 seemingly stopped

working, although the buttons and LEDs still worked. This problem disappeared the following

day and never occurred again. Once this part of the project was working, design was started on

the SD card driver. This began with the SD sending component, which was tested in simulation

(Appendix I) and then with a simple test harness that sent a single command. Debugging this

system took a significant amount of time because it was not known that data was supposed to be

clocked out on the falling edge. Once this was solved, the component was turned into the SD

command controller, which allowed a higher level driver to execute a series of commands to

initialize the card. In this first phase, testing was done without any connection to the audio

system. Once it was possible to fully initialize the SD card, work was begun to integrate it into

the audio system. First, reading was implemented. Reading was deemed slightly easier than

writing because there was no need to worry about erasing. In order to have something to read, a

Python program was written to allow audio files to be written to an SD card in the format

expected by the voice recorder (see Appendix J). The most difficult part of getting this to work

was making sure the audio controller and SD driver stayed within the correct bounds of the

buffer. Lastly, writing and erasing were implemented, which had similar issues as reading.

3. Evaluation

Although the design goals were satisfied, there are a number of features that would

almost certainly be necessary for this system to have any real applications or practicality. It is

only capable of recording a single audio file, and new recording overwrites the previous

recordings. A practical voice recorder needs to be able to store multiple recordings, ideally in a

file system that is interoperable with other systems. The ability to store multiple recordings

12

would also likely require a better user interface that provides more feedback to the user than just

a few LEDs. It is not possible to swap SD cards without restarting the system, which is

inconvenient. Many of the more complicated features are unsuited to an FPGA implementation,

and would be much simpler to implement using a microprocessor.

4. Conclusions

The final design accomplished the initial goal of being able to record and play audio from

the onboard RAM, as well as the secondary goal of writing that data to an SD card. The primary

goal was easily achievable with the skills and resources obtained in ENGS 31. The SD card

portion of the project was more difficult and required significant research outside of what was

taught in class (How to Use MMC/SDC, 2018; SD Specifications, 2017). This meant that the

TAs had limited ability to help with this part of the design. Students who want to implement an

SD card driver in the future should be prepared to perform independent research and read

technical specifications.

5. Acknowledgments

We gained the skills to implement this project from Professor Hansen’s lectures and the

laboratory exercises. In addition, our design process was facilitated in consultation with our

learning fellow, Ella Ryan. The audio controller and the modifications to the A/D driver were

done by Ben Wolsieffer. The D/A driver and the UI controller were written by Afia Semin. The

SD card driver design and implementation were done by Ben Wolsieffer. The SD card portion of

the project was outside the specifications as initially proposed at the design review.

13

6. References

"How to Use MMC/SDC." March 13, 2018. Accessed August 16, 2018.

http://elm-chan.org/docs/mmc/mmc_e.html.

“SD Specifications Part 1: Physical Layer Simplified Specification." April 10, 2017. SD

Association. Accessed August 12, 2018. https://www.sdcard.org/downloads/pls/.

14

Appendix A - Annotated front panel

15

Appendix B - Block diagrams

Figure B1. Hardware Block Diagram

https://www.benwolsieffer.com/engs31/Hardware%20Diagram.svg

16

Figure B2. Top level block diagram

https://www.benwolsieffer.com/engs31/Top%20Level%20Block%20Diagram.svg

17

Figure B3. D/A driver block diagram

18

Figure B4. Audio controller block diagram

19

Figure B5. UI controller block diagram

Figure B6. SD send component logic diagram

20

Figure B7. SD receive component logic diagram

21

Figure B8. Simplified block diagram for SD driver and command controller. This diagram shows
basic data flows, but is missing many of the complicated implementation details.

22

Appendix C - State diagrams 2

Figure C1. D/A driver state diagram

2 To see enlarged versions of these diagrams, click on the image.

https://www.benwolsieffer.com/engs31/D_A%20Controller%20State%20Machine.svg

23

Figure C2. Audio controller state diagram

https://www.benwolsieffer.com/engs31/Audio%20Controller%20State%20Machine.svg

24

Figure C3. UI controller state diagram

https://www.benwolsieffer.com/engs31/UI%20Controller%20State%20Machine.svg

25

Figure C4. SD command controller state diagram

https://www.benwolsieffer.com/engs31/SD%20Command%20State%20Machine.svg

26

Figure C5. SD driver state diagram

https://www.benwolsieffer.com/engs31/SD%20Driver%20State%20Machine.svg

27

Appendix D - Parts list

Quantity Name Description

1 Basys 3 Xilinx Artix-7 FPGA development board

1 Pmod MIC3 MEMS Microphone and 12-bit Analog-to-Digital convertor

1 Pmod DA2 2 channel 12-bit Digital-to-Analog converter

1 Pmod AMP2 Low power audio amplifier

1 Pmod SD Full-sized SD Card Slot

1 Speaker Speaker with male 3.5 mm jack

28

Appendix E - VHDL code and constraints

voice_recorder.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer, Afia Semin

--

-- Create Date: 08/12/2018 08:28:03 PM

-- Design Name:

-- Module Name: voice_recorder - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Basys 3

-- Tool Versions:

-- Description: Top level file for the voice recorder

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity voice_recorder is
 port(mclk: in std_logic;

 f_play_btn: in std_logic;
 s_play_btn: in std_logic;
 play_btn: in std_logic;

29

 record_btn: in std_logic;
 f_play_led: out std_logic;
 s_play_led: out std_logic;
 play_led: out std_logic;
 record_led: out std_logic;

 -- Data visualization
 data_leds: out std_logic_vector(11 downto 0);

 ad_spi_sclk: out std_logic;
 ad_spi_sdata: in std_logic;
 ad_spi_cs: out std_logic;

 da_spi_sclk: out std_logic;
 da_spi_sdata: out std_logic;
 da_spi_cs: out std_logic;

 sd_spi_sclk: out std_logic;
 sd_spi_mosi: out std_logic;
 sd_spi_miso: in std_logic;
 sd_spi_cs: out std_logic;
 sd_wp: in std_logic;
 sd_cd: in std_logic);
end voice_recorder;

architecture behavior of voice_recorder is
 constant SCLK_DIVIDER: positive := 10; -- 10 MHz

 constant SAMPLE_BITS: positive := 12;
 -- number of bits in virtual address space used for counting
samples

 constant INDEX_BITS: positive := 32;
 -- number of RAM address bits (RAM must be configured so entire
address space is addressable)

 constant ADDR_BITS: positive := 17;

 component clock_divider is
 generic(divider: integer);

30

 port(mclk: in std_logic;
 dclk: out std_logic);
 end component;

 component down_counter is
 generic(bits: positive := 4);
 port(clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 component pmod_ad1 is
 port(sclk: in std_logic;
 take_sample: in std_logic;
 ad_data: out std_logic_vector(11 downto 0) := (others =>
'0');
 ad_data_ready: out std_logic;

 spi_sclk: out std_logic;
 spi_cs: out std_logic;
 spi_sdata: in std_logic);
 end component;

 component pmod_da2
 port(da_data: in std_logic_vector (11 downto 0);
 tick_sample: in std_logic;
 sclk: in std_logic;
 spi_data: out std_logic;
 spi_sclk: out std_logic;
 spi_cs: out std_logic);
 end component;

31

 component UI_controller
 port(sclk: in std_logic;
 play_btn: in std_logic;
 f_play_btn: in std_logic;
 s_play_btn: in std_logic;
 audio_done: in std_logic;
 sd_done: in std_logic;
 rec_btn: in std_logic;
 play_out: out std_logic;
 play_led: out std_logic;
 f_play_led: out std_logic;
 s_play_led: out std_logic;
 rec_out: out std_logic;
 rec_led: out std_logic;
 tick_sample_div: out std_logic_vector(9 downto 0));
 end component;

 component sync is
 port(clk: in std_logic;
 input: in std_logic;
 output: out std_logic);
 end component;

 component audio_controller is
 generic(sample_bits: positive := 12; -- sample depth in RAM
 index_bits: positive := 32;
 addr_bits: positive := 17); -- width of RAM address
bus (must be fully addressable)

 port(clk: in std_logic;

 -- UI signals
 rec: in std_logic;
 play: in std_logic;
 sd_done: in std_logic;
 done: out std_logic;

 take_sample: in std_logic;

32

 -- A/D
 ad_data: in std_logic_vector(11 downto 0);
 ad_data_ready: in std_logic;
 ad_take_sample: out std_logic;

 -- D/A
 da_data: out std_logic_vector(11 downto 0);
 da_new_sample: out std_logic;

 -- Address mapping information
 index_audio: out std_logic_vector(index_bits - 1 downto
0); -- index of end of buffer/free space if recording or playing,
respectively (exclusive)

 index_sd: in std_logic_vector(index_bits - 1 downto 0);

 -- RAM
 ram_wr_en: out std_logic;
 ram_addr: out std_logic_vector(addr_bits - 1 downto 0);
 ram_din: in std_logic_vector(sample_bits - 1 downto 0);
 ram_dout: out std_logic_vector(sample_bits - 1 downto
0));
 end component;

 component sd_driver is
 generic(sample_bits: positive := 12; -- sample depth in RAM
 index_bits: positive := 40;
 addr_bits: positive := 17); -- width of RAM address
bus (must be fully addressable)

 port(sclk: in std_logic;
 rec: in std_logic;
 play: in std_logic;
 audio_done: in std_logic;
 done: out std_logic;
 error: out std_logic;

 index_audio: in std_logic_vector(index_bits - 1 downto
0); -- location of audio controller in recordin
 index_sd: out std_logic_vector(index_bits - 1 downto 0);

33

-- location of SD driver in recording

 -- SD card
 sd_spi_sclk: out std_logic;
 sd_spi_mosi: out std_logic;
 sd_spi_miso: in std_logic;
 sd_spi_cs: out std_logic;
 sd_wp: in std_logic;
 sd_cd: in std_logic;

 -- RAM
 ram_wr_en: out std_logic;
 ram_addr: out std_logic_vector(addr_bits - 1 downto 0);
 ram_din: in std_logic_vector(sample_bits - 1 downto 0);
 ram_dout: out std_logic_vector(sample_bits - 1 downto
0));
 end component;

 component audio_buffer is
 port(clka: in std_logic;
 wea: in std_logic_vector(0 downto 0);
 addra: in std_logic_vector(16 downto 0);
 dina: in std_logic_vector(11 downto 0);
 douta: out std_logic_vector(11 downto 0);
 clkb: in std_logic;
 web: in std_logic_vector(0 downto 0);
 addrb: in std_logic_vector(16 downto 0);
 dinb: in std_logic_vector(11 downto 0);
 doutb: out std_logic_vector(11 downto 0));
 end component;

 component button is
 generic(count: positive := 1000);
 port(clk: in std_logic;
 input: in std_logic;
 output: out std_logic);
 end component;

34

 -- clock used for SPI and all logic
 signal sclk: std_logic;

 -- monopulsed buttons
 signal s_play_btn_mp, f_play_btn_mp, play_btn_mp, record_btn_mp:
std_logic := '0';

 -- UI signals
 signal rec, play, audio_done, sd_done, eof, sd_error: std_logic
:= '0';

 signal take_sample: std_logic := '0';

 signal tick_sample_div: std_logic_vector(9 downto 0) := (others
=> '0');

 -- A/D signals
 signal ad_data: std_logic_vector(11 downto 0) := (others => '0');
 signal ad_data_ready, ad_take_sample: std_logic := '0';

 -- D/A signals
 signal da_data: std_logic_vector(11 downto 0);
 signal da_new_sample: std_logic;

 -- SD signals
 signal sd_wp_sync: std_logic;

 signal index_audio, index_sd: std_logic_vector(INDEX_BITS - 1
downto 0);

 -- Audio RAM signals
 signal audio_ram_wr_en: std_logic;
 signal audio_ram_wr_en_vec: std_logic_vector(0 downto 0);
 signal audio_ram_addr: std_logic_vector(ADDR_BITS - 1 downto 0)
:= (others => '0');
 signal audio_ram_din, audio_ram_dout:
std_logic_vector(SAMPLE_BITS - 1 downto 0) := (others => '0');

35

 -- SD RAM signals
 signal sd_ram_wr_en: std_logic;
 signal sd_ram_wr_en_vec: std_logic_vector(0 downto 0);
 signal sd_ram_addr: std_logic_vector(ADDR_BITS - 1 downto 0) :=
(others => '0');
 signal sd_ram_din, sd_ram_dout: std_logic_vector(SAMPLE_BITS - 1
downto 0) := (others => '0');

begin

 data_leds <= da_data;

 -- sclk generator
 sclk_generator: clock_divider

 generic map(divider => SCLK_DIVIDER)
 port map(mclk => mclk,
 dclk => sclk);

 -- take_sample generator
 take_sample_counter: down_counter

 generic map(bits => 10)
 port map(clk => sclk,
 k => tick_sample_div,

 TC => take_sample);

 -- A/D
 ad: pmod_ad1

 port map(sclk => sclk,
 take_sample => ad_take_sample,

 ad_data => ad_data,

 ad_data_ready => ad_data_ready,

 spi_sclk => ad_spi_sclk,

 spi_sdata => ad_spi_sdata,

 spi_cs => ad_spi_cs);

 -- D/A
 da: pmod_da2

 port map(sclk => sclk,

36

 tick_sample => da_new_sample,

 da_data => da_data,

 spi_sclk => da_spi_sclk,

 spi_data => da_spi_sdata,

 spi_cs => da_spi_cs);

 -- play button debouncer
 play_btn_debounce: button

 port map(clk => sclk,
 input => play_btn,

 output => play_btn_mp);

 --fast play button debouncer
 f_play_btn_debounce: button

 port map(clk => sclk,
 input => f_play_btn,

 output => f_play_btn_mp);

 -- slow play button debouncer
 s_play_btn_debounce: button

 port map(clk => sclk,
 input => s_play_btn,

 output => s_play_btn_mp);

 -- record button debounce
 record_btn_debounce: button

 port map(clk => sclk,
 input => record_btn,

 output => record_btn_mp);

 -- UI controller
 ui_controller_map: UI_controller

 port map(sclk => sclk,
 play_btn => play_btn_mp,

 f_play_btn => f_play_btn_mp,

 s_play_btn => s_play_btn_mp,

 rec_btn => record_btn_mp,

 play_led => play_led,

37

 f_play_led => f_play_led,

 s_play_led => s_play_led,

 rec_led => record_led,

 audio_done => audio_done,

 sd_done => sd_done,

 play_out => play,

 rec_out => rec,

 tick_sample_div => tick_sample_div);

 -- port map main audio controller
 audio_controller_map: audio_controller

 generic map(sample_bits => SAMPLE_BITS,
 index_bits => INDEX_BITS,

 addr_bits => ADDR_BITS)

 port map(clk => sclk,
 rec => rec,

 play => play,

 sd_done => sd_done,

 done => audio_done,

 take_sample => take_sample,

 ad_data => ad_data,

 ad_data_ready => ad_data_ready,

 ad_take_sample => ad_take_sample,

 da_data => da_data,

 da_new_sample => da_new_sample,

 index_audio => index_audio,

 index_sd => index_sd,

 ram_wr_en => audio_ram_wr_en,

 ram_addr => audio_ram_addr,

 ram_din => audio_ram_din,

 ram_dout => audio_ram_dout);

 sd_wp_sync_map: sync

 port map(clk => sclk,
 input => sd_wp,

 output => sd_wp_sync);

 sd_driver_map: sd_driver

38

 generic map(sample_bits => SAMPLE_BITS,
 index_bits => INDEX_BITS,

 addr_bits => ADDR_BITS)

 port map(sclk => sclk,
 rec => rec,

 play => play,

 audio_done => audio_done,

 done => sd_done,

 error => sd_error,
 index_audio => index_audio,

 index_sd => index_sd,

 sd_spi_sclk => sd_spi_sclk,

 sd_spi_mosi => sd_spi_mosi,

 sd_spi_miso => sd_spi_miso,

 sd_spi_cs => sd_spi_cs,

 sd_wp => sd_wp_sync,

 sd_cd => '1',
 ram_wr_en => sd_ram_wr_en,

 ram_addr => sd_ram_addr,

 ram_din => sd_ram_din,

 ram_dout => sd_ram_dout);

 -- block RAM audio buffer
 audio_ram_wr_en_vec(0) <= audio_ram_wr_en;
 sd_ram_wr_en_vec(0) <= sd_ram_wr_en;
 ram: audio_buffer

 port map(clka => sclk,
 wea => audio_ram_wr_en_vec,

 addra => audio_ram_addr,

 dina => audio_ram_dout,

 douta => audio_ram_din,

 clkb => sclk,

 web => sd_ram_wr_en_vec,

 addrb => sd_ram_addr,

 dinb => sd_ram_dout,

 doutb => sd_ram_din);

end behavior;

39

pmod_ad1.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 07/20/2018 09:27:40 AM

-- Design Name:

-- Module Name: pmod_ad1 - behavior

-- Project Name: pmod_ad1

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: Driver for the Diligent Pmod AD1 (Analog Devices

AD7476A).

--

-- Dependencies: down_counter.vhd

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity pmod_ad1 is
 port(sclk: in std_logic;
 take_sample: in std_logic;
 ad_data: out std_logic_vector(11 downto 0) := (others =>
'0');
 ad_data_ready: out std_logic;

 spi_sclk: out std_logic;
 spi_cs: out std_logic;

40

 spi_sdata: in std_logic);
end pmod_ad1;

architecture behavior of pmod_ad1 is
 component down_counter is
 generic(bits: positive := 4);
 port (clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 -- Controller
 type state_type is (st_wait, st_shift, st_load);
 signal state: state_type := st_wait;
 signal next_state: state_type := st_wait;

 -- Datapath
 signal shift_en: std_logic := '0';
 signal load_en: std_logic := '0';
 signal ser_data_reg: std_logic_vector(11 downto 0) := (others =>
'0');
 signal shift_tc: std_logic := '0';
 signal shift_preset: std_logic := '0';
begin

 -- Controller
 shift_counter: down_counter port map(
 clk => sclk,

 k => std_logic_vector(to_unsigned(14, 4)),
 preset => shift_preset,

 TC => shift_tc);

 output_proc: process(state) begin

41

 shift_en <= '0';
 load_en <= '0';
 shift_preset <= '0';
 spi_cs <= '1';
 ad_data_ready <= '0';

 case state is
 when st_wait => shift_preset <= '1';
 when st_shift =>
 shift_en <= '1';
 spi_cs <= '0';
 when st_load =>
 load_en <= '1';
 ad_data_ready <= '1';
 end case;
 end process;

 next_state_proc: process(state, take_sample, shift_tc) begin
 next_state <= state;

 case state is
 when st_wait =>
 if take_sample = '1' then
 next_state <= st_shift;

 end if;
 when st_shift =>
 if shift_tc = '1' then
 next_state <= st_load;

 end if;
 when st_load => next_state <= st_wait;
 end case;
 end process;

 state_update_proc: process(sclk) begin
 if rising_edge(sclk) then
 state <= next_state;

 end if;
 end process;

42

 -- Datapath

 -- pass clock input to output
 spi_sclk <= sclk;

 shift_proc: process(sclk) begin
 if rising_edge(sclk) then
 if shift_en = '1' then
 -- shift SPI data into the LSB
 ser_data_reg <= ser_data_reg(ser_data_reg'high - 1
downto 0) & spi_sdata;
 end if;
 end if;
 end process;

 load_proc: process(sclk) begin
 if rising_edge(sclk) then
 if load_en = '1' then
 -- copy 12 least significant bits from serial
register to A/D

 -- data register
 ad_data <= ser_data_reg(ad_data'range);
 end if;
 end if;
 end process;
end behavior;

pmod_da2.vhd

-- Company: ENGS 31, 18X

-- Engineer: Afia Semin

--

-- Create Date: 08/11/2018 07:54:21 PM

-- Design Name:

-- Module Name: pmod_da2 - behavior

-- Project Name: VoiceRecorder

43

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: Driver for the Diligent Pmod DA2 (Texas Instruments

DAC121S101).

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity pmod_da2 is
 port(da_data: in std_logic_vector (11 downto 0);
 tick_sample: in std_logic;
 sclk: in std_logic;
 spi_data: out std_logic;
 spi_sclk: out std_logic;
 spi_cs: out std_logic);
end pmod_da2;

architecture behavior of pmod_da2 is

 signal n_shifts: unsigned(3 downto 0):="1111";
 signal shift_en: std_logic;
 signal par_data_reg: std_logic_vector(15 downto 0) := (others =>
'0');
 signal TC: std_logic;
 signal iCS: std_logic;
 type state is (waits, load, shift);
 signal curr_state, next_state: state;

44

begin

 spi_sclk <= sclk;

 spi_cs <= iCS;

 shift_count: process(sclk, n_shifts, iCS) begin
 if rising_edge(sclk) then
 if (n_shifts > 0) and (iCS = '0') then
 n_shifts <= n_shifts - 1;
 elsif n_shifts = "0000" then
 n_shifts <= "1111";
 end if;
 end if;

 if n_shifts = "0000" then
 TC <= '1';
 else
 TC <= '0';
 end if;
 end process shift_count;

 input_reg: process(sclk, tick_sample) begin
 if rising_edge(sclk) then
 if tick_sample = '1' then
 par_data_reg <= std_logic_vector(resize(
unsigned(da_data), 16));
 elsif shift_en <= '1' then
 spi_data <= par_data_reg(15);
 par_data_reg <= par_data_reg(14 downto 0) & "0";
 end if;
 end if;
 end process input_reg;

 state_update: process(sclk) begin
 if rising_edge(sclk) then
 curr_state <= next_state;

 end if;

45

 end process state_update;

 controller: process(curr_state, tick_sample, TC) begin
 iCS <= '1';
 shift_en <= '0';
 next_state <= curr_state;

 case curr_state is
 when waits =>
 iCS <= '1';
 if tick_sample = '1' then
 next_state <= load;

 end if;

 when load =>
 next_state <= shift;

 when shift =>
 iCS <= '0';
 shift_en <= '1';
 if TC = '1' then
 next_state <= waits;

 end if;
 end case;
 end process controller;

end behavior;

audio_controller.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/11/2018 07:12:17 PM

-- Design Name:

-- Module Name: audio_controller - behavior

46

-- Project Name: VoiceREcorder

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity audio_controller is
 generic(sample_bits: positive := 12; -- sample depth in RAM
 index_bits: positive := 40;
 addr_bits: positive := 17); -- width of RAM address bus
(must be fully addressable)

 port(clk: in std_logic;

 -- UI signals
 rec: in std_logic;
 play: in std_logic;
 sd_done: in std_logic;
 done: out std_logic;

 take_sample: in std_logic;

 -- A/D
 ad_data: in std_logic_vector(11 downto 0);
 ad_data_ready: in std_logic;
 ad_take_sample: out std_logic;

47

 -- D/A
 da_data: out std_logic_vector(11 downto 0);
 da_new_sample: out std_logic;

 -- Address mapping information
 index_audio: out std_logic_vector(index_bits - 1 downto 0);
-- index of end of buffer/free space if recording or playing,

respectively (exclusive)

 index_sd: in std_logic_vector(index_bits - 1 downto 0);

 -- RAM
 ram_wr_en: out std_logic;
 ram_addr: out std_logic_vector(addr_bits - 1 downto 0);
 ram_din: in std_logic_vector(sample_bits - 1 downto 0);
 ram_dout: out std_logic_vector(sample_bits - 1 downto 0));
end audio_controller;

architecture behavior of audio_controller is
 constant TAKE_SAMPLE_DIVIDER: integer := 20;
 constant TAKE_SAMPLE_BITS: integer :=
integer(ceil(log2(real(TAKE_SAMPLE_DIVIDER))));

 constant RAM_SIZE: positive := 2 ** addr_bits;

 -- Maximum possible index
 constant INDEX_MAX: unsigned(index_bits - 1 downto 0) := (others
=> '1');

 component down_counter is
 generic(bits: positive := 4);
 port (clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter

48

output

 TC: out std_logic); -- terminal count
 end component;

 type state_type is (st_idle, st_record, st_ad_wait, st_write,
st_play, st_index_inc, st_done);

 type index_sel_type is (hold, increment, reset);

 signal state: state_type := st_idle;
 signal next_state: state_type;

 signal index_sel: index_sel_type;
 signal rec_end_en: std_logic;
 signal da_en: std_logic;

 signal index_reg: unsigned(INDEX_MAX'range) := (others => '0');
begin

 ad_take_sample <= take_sample;

 da_new_sample <= take_sample when da_en = '1' else '0';

 -- Take index modulo the RAM size, creating a circular buffer
 ram_addr <= std_logic_vector(index_reg(ram_addr'range));
 ram_dout <= ad_data;

 da_data <= ram_din;

 -- Update address register
 index_reg_proc: process(clk) begin
 if rising_edge(clk) then
 case index_sel is
 when hold => null;
 when increment => index_reg <= index_reg + 1;
 when reset => index_reg <= (others => '0');
 end case;
 end if;
 end process;

 index_audio <= std_logic_vector(index_reg);

49

 next_state_proc: process(state, index_reg, play, rec,
take_sample, ad_data_ready, sd_done, index_sd)

 variable index_sd_end: unsigned(index_sd'range); -- end of
free RAM space while recording

 begin
 -- Calculate end of free space (only used when recording)
 if unsigned(index_sd) > INDEX_MAX - RAM_SIZE then
 index_sd_end := INDEX_MAX;

 else
 index_sd_end := unsigned(index_sd) + RAM_SIZE;
 end if;
 next_state <= state;

 case state is
 when st_idle =>
 if rec = '1' then
 next_state <= st_record;

 elsif play = '1' then
 next_state <= st_play;

 end if;
 -- Record
 when st_record =>
 if rec = '0' or sd_done = '1' then
 next_state <= st_done;

 elsif take_sample = '1' and index_reg < index_sd_end
then

 -- only record when there is free space
 next_state <= st_ad_wait;

 end if;
 when st_ad_wait =>
 if ad_data_ready = '1' then
 next_state <= st_write;

 end if;
 when st_write =>
 if index_reg = INDEX_MAX then
 -- If we run out of indices, stop.
 -- Must be checked after sample has been taken,

50

but before

 -- an overflow can occur
 next_state <= st_done;

 else
 next_state <= st_record;

 end if;
 -- Play
 when st_play =>
 if play = '0' then
 next_state <= st_done;

 elsif index_reg + 1 < unsigned(index_sd) then
 -- only play when there are samples in the buffer
 if take_sample = '1' then
 next_state <= st_index_inc;

 end if;
 elsif sd_done = '1' then
 -- if the sd card has finished buffering and we
reach

 -- the end of the buffer, we are done
 next_state <= st_done;

 end if;
 when st_index_inc => next_state <= st_play;
 when st_done =>
 if sd_done = '1' then
 next_state <= st_idle;

 end if;
 end case;
 end process;

 output_proc: process(state) begin

 index_sel <= reset;

 rec_end_en <= '0';
 da_en <= '0';

 ram_wr_en <= '0';
 done <= '0';

 case state is

51

 when st_idle => null;
 when st_record =>
 index_sel <= hold;

 when st_ad_wait =>
 index_sel <= hold;

 when st_write =>
 ram_wr_en <= '1';
 index_sel <= increment;

 rec_end_en <= '1';
 when st_play =>
 index_sel <= hold;

 da_en <= '1';
 when st_index_inc =>
 index_sel <= increment;

 when st_done =>
 done <= '1';
 end case;
 end process;

 state_update_proc: process(clk) begin
 if rising_edge(clk) then
 state <= next_state;

 end if;
 end process;

end behavior;

UI_controller.vhd

-- Company: ENGS 31, 18X

-- Engineer: Afia Semin

--

-- Create Date: 08/12/2018 07:35:23 PM

-- Design Name:

-- Module Name: UI_controller - Behavioral

-- Project Name: VoiceRecorder

52

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity UI_controller is
 port(sclk: in std_logic;
 play_btn: in std_logic;
 f_play_btn: in std_logic;
 s_play_btn: in std_logic;
 audio_done: in std_logic;
 sd_done: in std_logic;
 rec_btn: in std_logic;
 play_out: out std_logic;
 play_led: out std_logic;
 f_play_led: out std_logic;
 s_play_led: out std_logic;
 rec_out: out std_logic;
 rec_led: out std_logic;
 tick_sample_div: out std_logic_vector(9 downto 0));
end UI_controller;

architecture Behavioral of UI_controller is

53

 constant TAKE_SAMPLE_BITS: integer := 10;

 constant TAKE_SAMPLE_DIVIDER: integer := 227; -- 44.052 kHz
 constant F_TAKE_SAMPLE_DIVIDER: integer := 114; -- 87.719 kHz
 constant S_TAKE_SAMPLE_DIVIDER: integer := 600; -- 16.667 kHz

 type state is (idle, play, fast_play, slow_play, rec, done_wait);
 signal curr_state, next_state: state;

begin

 controller: process(curr_state, f_play_btn, s_play_btn, play_btn,
rec_btn, audio_done, sd_done) begin
 play_out <= '0';
 play_led <= '0';
 f_play_led <= '0';
 s_play_led <= '0';
 rec_out <= '0';
 rec_led <= '0';
 tick_sample_div <=

std_logic_vector(to_unsigned(TAKE_SAMPLE_DIVIDER, TAKE_SAMPLE_BITS));
 next_state <= curr_state;

 case curr_state is
 when idle =>
 if play_btn = '1' then
 next_state <= play;

 end if;

 if f_play_btn = '1' then
 next_state <= fast_play;

 end if;

 if s_play_btn = '1' then
 next_state <= slow_play;

 end if;

 if rec_btn = '1' then

54

 next_state <= rec;

 end if;

 when play =>
 play_out <= '1';
 play_led <= '1';
 if audio_done = '1' and sd_done = '1' then
 next_state <= idle;

 elsif play_btn = '1' then
 next_state <= done_wait;

 end if;

 when fast_play =>
 play_out <= '1';
 f_play_led <= '1';
 tick_sample_div <=

std_logic_vector(to_unsigned(F_TAKE_SAMPLE_DIVIDER,
TAKE_SAMPLE_BITS));

 if audio_done = '1' and sd_done = '1' then
 next_state <= idle;

 elsif f_play_btn = '1' then
 next_state <= done_wait;

 end if;

 when slow_play =>
 play_out <= '1';
 s_play_led <= '1';
 tick_sample_div <=

std_logic_vector(to_unsigned(S_TAKE_SAMPLE_DIVIDER,
TAKE_SAMPLE_BITS));

 if audio_done = '1' and sd_done = '1' then
 next_state <= idle;

 elsif s_play_btn = '1' then
 next_state <= done_wait;

 end if;

 when rec =>
 rec_out <= '1';

55

 rec_led <= '1';
 if audio_done = '1' and sd_done = '1' then
 next_state <= idle;

 elsif rec_btn = '1' then
 next_state <= done_wait;

 end if;

 when done_wait =>
 if audio_done = '1' and sd_done = '1' then
 next_state <= idle;

 end if;
 end case;
 end process;

 state_update: process(sclk) begin
 if rising_edge(sclk) then
 curr_state <= next_state;

 end if;
 end process state_update;

end Behavioral;

sd_driver.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/14/2018 04:27:27 PM

-- Design Name:

-- Module Name: sd_driver - behavior

-- Project Name:

-- Target Devices:

-- Tool Versions:

-- Description:

--

-- Dependencies: sd_cmd.vhd

56

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_driver is
 generic(sample_bits: positive := 12; -- sample depth in RAM
 index_bits: positive := 40;
 addr_bits: positive := 17); -- width of RAM address bus
(must be fully addressable)

 port(sclk: in std_logic;
 rec: in std_logic;
 play: in std_logic;
 audio_done: in std_logic;
 done: out std_logic;
 error: out std_logic;

 index_audio: in std_logic_vector(index_bits - 1 downto 0);
-- location of audio controller in recordin

 index_sd: out std_logic_vector(index_bits - 1 downto 0); --
location of SD driver in recording

 -- SD card
 sd_spi_sclk: out std_logic;
 sd_spi_mosi: out std_logic;
 sd_spi_miso: in std_logic;
 sd_spi_cs: out std_logic;
 sd_wp: in std_logic;
 sd_cd: in std_logic;

57

 -- RAM
 ram_wr_en: out std_logic;
 ram_addr: out std_logic_vector(addr_bits - 1 downto 0);
 ram_din: in std_logic_vector(sample_bits - 1 downto 0);
 ram_dout: out std_logic_vector(sample_bits - 1 downto 0));
end sd_driver;

architecture behavior of sd_driver is

 constant SECTOR_SIZE: positive := 512;

 -- don't start at beginning of device
 constant SECTOR_OFFSET: natural := 8192;
 constant ADDR_OFFSET: natural := SECTOR_OFFSET * SECTOR_SIZE;

 -- hardcoded erase block size
 constant ERASE_SECTORS: positive := 8192;

 constant BYTES_PER_INDEX: positive := 2;
 constant INDICES_PER_SECTOR: positive := SECTOR_SIZE /
BYTES_PER_INDEX;

 constant RAM_SIZE: positive := 2 ** addr_bits;

 -- Maximum possible index
 constant INDEX_MAX: unsigned(index_bits - 1 downto 0) := (others
=> '1');

 component down_counter is
 generic(bits: positive := 4);
 port(clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter

58

output

 TC: out std_logic); -- terminal count
 end component;

 component sd_cmd is
 port(sclk: in std_logic;
 cmd: in std_logic_vector(5 downto 0);
 cmd_arg: in std_logic_vector(31 downto 0);
 cmd_start: in std_logic; -- assert to start command
 cmd_end: out std_logic;
 res_r1: out std_logic_vector(7 downto 0) := x"00"; -- r1
response (first byte of response)

 res_data: out std_logic_vector(31 downto 0) :=
x"00000000"; -- response data/card status
 data_index: out std_logic_vector(8 downto 0);
 data_in: in std_logic_vector(7 downto 0);
 data_out: out std_logic_vector(7 downto 0);
 data_out_en: out std_logic;
 error: out std_logic;
 sd_spi_sclk: out std_logic;
 sd_spi_mosi: out std_logic;
 sd_spi_miso: in std_logic;
 sd_spi_cs: out std_logic);
 end component;

 type state_type is (start, init, go_idle_state, send_if_cond,
app_cmd, sd_send_op_cond, read_ocr, set_blocklen, send_csd,

 idle, st_done, st_error,

 st_play, read_length, read_samples,

play_sector_inc,

 st_record, write_samples, record_sector_inc,

erase_wr_blk_start_addr, erase_wr_blk_end_addr, erase, write_length);

 signal state: state_type := start;
 signal next_state: state_type;

 signal sd_init: std_logic;

 -- Command type and argument registers

59

 signal cmd: std_logic_vector(5 downto 0);
 signal cmd_arg: std_logic_vector(31 downto 0);
 signal cmd_start, cmd_end: std_logic;

 -- Response data
 signal res_r1: std_logic_vector(7 downto 0);
 signal res_data: std_logic_vector(31 downto 0);

 -- Data block
 signal data_index: std_logic_vector(8 downto 0);
 signal data_in, data_out: std_logic_vector(7 downto 0);
 signal data_out_en: std_logic;

 type read_dest_type is (dest_length, dest_ram, dest_csd);
 signal read_dest: read_dest_type;

 signal cmd_error: std_logic;

 -- card information

 -- card specific data (CSD)
 subtype CSD_STRUCTURE is natural range 127 downto 126;
 subtype CSD_V1_READ_BL_LEN is natural range 83 downto 80;
 subtype CSD_V1_C_SIZE is natural range 73 downto 62;
 subtype CSD_V1_C_SIZE_MULT is natural range 49 downto 47;
 subtype CSD_V2_C_SIZE is natural range 69 downto 48;
 signal csd_reg: std_logic_vector(127 downto 0) := (others =>
'0');

 -- maximum sector index (from CSD)
 signal card_sector_max: unsigned(31 downto 0);

 -- operation conditions register (indicates that card is SDHC or
SDXC)

 constant OCR_CCS: natural := 30;
 signal ocr_reg: std_logic_vector(31 downto 0);
 signal ocr_reg_en: std_logic;

60

 -- Audio information

 -- current sector
 signal sector: unsigned(31 downto 0) := (others => '0');
 signal addr: unsigned(40 downto 0);
 signal sector_reset, sector_inc: std_logic;

 signal sector_multiplier: unsigned(9 downto 0);

 -- index: logical index in the audio file
 signal index: unsigned(index_bits - 1 downto 0);
 -- maximum logical index of recorded data
 -- stored in first bytes of card (little endian)
 signal index_end: unsigned(index_bits - 1 downto 0) := (others =>
'0');

begin

 init_counter: down_counter

 generic map(bits => 8)
 port map(clk => sclk,
 k => x"64",
 TC => sd_init);

 sd_cmd_map: sd_cmd

 port map(sclk => sclk,
 cmd => cmd,

 cmd_arg => cmd_arg,

 cmd_start => cmd_start,

 cmd_end => cmd_end,

 res_r1 => res_r1,

 res_data => res_data,

 data_index => data_index,

 data_in => data_in,

 data_out => data_out,

 data_out_en => data_out_en,

 error => cmd_error,

61

 sd_spi_sclk => sd_spi_sclk,

 sd_spi_mosi => sd_spi_mosi,

 sd_spi_miso => sd_spi_miso,

 sd_spi_cs => sd_spi_cs);

 ocr_proc: process(sclk) begin
 if rising_edge(sclk) then
 if ocr_reg_en = '1' then
 ocr_reg <= res_data;

 end if;
 end if;
 end process;

 read_dest_proc: process(sclk, index, index_end, data_index,
read_dest, ram_din, data_out, data_out_en)

 variable bit_low: natural;
 variable unwrapped_index: unsigned(index'range);
 begin
 bit_low := to_integer(unsigned(data_index)) * 8;

 ram_wr_en <= '0';
 ram_dout <= (others => '0');
 data_in <= (others => '0');

 -- Every 12 bit sample is stored in two bytes on the SD card
 unwrapped_index := index + unsigned(data_index) /
BYTES_PER_INDEX;

 ram_addr <=

std_logic_vector(unwrapped_index(ram_addr'range));

 case read_dest is
 when dest_ram =>
 ram_wr_en <= data_out_en;

 if data_index(0) = '0' then -- even
 data_in <= ram_din(3 downto 0) & "0000";
 ram_dout <= "00000000" & data_out(7 downto 4);
 else -- odd
 data_in <= ram_din(11 downto 4);

62

 ram_dout <= data_out & ram_din(3 downto 0);
 end if;
 when dest_length =>
 if unsigned(data_index) < 4 then
 data_in <= std_logic_vector(index(bit_low + 7
downto bit_low));
 end if;
 when others => null;
 end case;

 if rising_edge(sclk) then
 if data_out_en = '1' then
 case read_dest is
 when dest_length =>
 if unsigned(data_index) < 4 then
 index_end(bit_low + 7 downto bit_low) <=
unsigned(data_out);
 end if;
 when dest_csd => csd_reg(bit_low + 7 downto
bit_low) <= data_out;

 when others => null;
 end case;
 end if;
 end if;
 end process;

 card_size_proc: process(csd_reg) begin
 if csd_reg(CSD_STRUCTURE) = "00" then
 -- SD v1.xx or MMC
 card_sector_max <=

(resize(unsigned(csd_reg(CSD_V1_C_SIZE)), card_sector_max'length) +
1) sll
 (to_integer(unsigned(csd_reg(CSD_V1_C_SIZE_MULT))) +
2 + to_integer(unsigned(csd_reg(CSD_V1_READ_BL_LEN))) / SECTOR_SIZE);
 else
 -- SD >=v2.00
 card_sector_max <=

resize(unsigned(csd_reg(CSD_V2_C_SIZE)) * 1024 + 1023,

63

card_sector_max'length);
 end if;
 end process;

 sector_proc: process(sclk) begin
 if rising_edge(sclk) then
 if sector_reset = '1' then
 sector <= to_unsigned(SECTOR_OFFSET, sector'length);
 elsif sector_inc = '1' then
 sector <= sector + 1;
 end if;
 end if;
 end process;

 sector_multiplier <= "0000000001" when ocr_reg(OCR_CCS) = '1'
else "1000000000";

 index <= resize((sector - SECTOR_OFFSET) * INDICES_PER_SECTOR,

index'length);
 addr <= resize(sector * SECTOR_SIZE, addr'length);

 index_sd <= std_logic_vector(index);

 next_state_proc: process(state, sd_init, play, rec, cmd_end,
cmd_error, res_r1, res_data, index_audio, index, index_end, sector,

card_sector_max, audio_done, sd_wp)

 variable index_audio_end: unsigned(index_sd'range); -- end of
free RAM space during playback

 begin
 -- Calculate end of free space (only used when playing)
 if unsigned(index_audio) > INDEX_MAX - RAM_SIZE then
 index_audio_end := INDEX_MAX;

 else
 index_audio_end := unsigned(index_audio) + RAM_SIZE;
 end if;
 next_state <= state;

 case state is

64

 when start => next_state <= init;
 when init =>
 if sd_init = '1' then
 next_state <= go_idle_state;

 end if;
 when idle =>
 if play = '1' then
 next_state <= read_length;

 elsif rec = '1' then
 next_state <= st_record;

 end if;
 when st_play =>
 -- the index conditions are also checked in
play_sector_inc.

 -- They are checked here in the unlikely case that
they are

 -- violated before the recording even begins (very
short

 -- recording, card smaller than the offset), but they
must also

 -- be checked before the increment occurs to prevent
wrapping

 -- with the largest cards and recordings.
 if play = '0' or index + (INDICES_PER_SECTOR - 1) >
index_end or sector > card_sector_max then
 next_state <= st_done;

 elsif index_audio_end > index + (INDICES_PER_SECTOR -
1) then
 next_state <= read_samples;

 end if;
 when play_sector_inc =>
 -- handle reaching the end of the recording, running
out of SD

 -- card space, or reaching the maximum index. These
must be

 -- handled before they occur to avoid a possible
overflow, but

 -- after the samples for the sector have been read.

65

 if index + (INDICES_PER_SECTOR - 1) >= index_end or
sector >= card_sector_max then
 next_state <= st_done;

 else
 next_state <= st_play;

 end if;
 when st_record =>
 -- Like playback, we should handle the boundary
conditions both

 -- here and in record_sector_inc
 if sd_wp = '1' then
 next_state <= st_done;

 elsif sector > card_sector_max then
 next_state <= write_length;

 elsif unsigned(index_audio) > index +
(INDICES_PER_SECTOR - 1) then
 if (sector mod ERASE_SECTORS) = 0 then
 next_state <= erase_wr_blk_start_addr;

 else
 next_state <= write_samples;

 end if;
 elsif audio_done = '1' then
 next_state <= write_length;

 end if;
 when record_sector_inc =>
 if sector >= card_sector_max then
 next_state <= write_length;

 else
 next_state <= st_record;

 end if;
 when st_done =>
 if audio_done = '1' then
 next_state <= idle;

 end if;
 when st_error => null;
 when others =>
 if cmd_end = '1' then
 case state is

66

 when go_idle_state =>
 if res_r1 = x"01" then
 next_state <= send_if_cond;

 end if;
 when send_if_cond =>
 if res_data(11 downto 0) = x"1AA" then
 next_state <= app_cmd;

 else
 next_state <= st_error;

 end if;
 when app_cmd =>
 next_state <= sd_send_op_cond;

 when sd_send_op_cond =>
 if res_r1 = x"01" then
 -- retry ACMD41
 next_state <= app_cmd;

 else
 next_state <= read_ocr;

 end if;
 when read_ocr =>
 if res_data(OCR_CCS) = '1' then
 next_state <= send_csd;

 else
 next_state <= set_blocklen;

 end if;
 when set_blocklen => next_state <= send_csd;
 when send_csd => next_state <= idle;
 when read_length => next_state <= st_play;
 when read_samples => next_state <=
play_sector_inc;

 when write_samples => next_state <=
record_sector_inc;

 when erase_wr_blk_start_addr => next_state <=
erase_wr_blk_end_addr;

 when erase_wr_blk_end_addr => next_state <=
erase;

 when erase => next_state <= write_samples;
 when write_length => next_state <= st_done;

67

 when others => null;
 end case;
 end if;
 end case;

 -- error catching
 if cmd_error = '1' then
 next_state <= st_error;

 end if;
 end process;

 output_proc: process(state, sector, sector_multiplier) begin
 done <= '0';
 error <= '0';
 sector_reset <= '0';
 sector_inc <= '0';
 ocr_reg_en <= '0';
 cmd_start <= '0';
 cmd <= "000000";
 cmd_arg <= x"00000000";
 read_dest <= dest_ram;

 case state is
 when start => null;
 when init => null;
 when idle => sector_reset <= '1';
 when st_play => null;
 when play_sector_inc => sector_inc <= '1';
 when st_record => null;
 when record_sector_inc => sector_inc <= '1';
 when st_done => done <= '1';
 when st_error => error <= '1';
 when others =>
 cmd_start <= '1';
 case state is
 when go_idle_state => null;
 when send_if_cond =>
 cmd <= "001000";

68

 cmd_arg <= x"000001AA";
 when app_cmd =>
 cmd <= "110111";
 when sd_send_op_cond =>
 cmd <= "101001";
 cmd_arg <= x"40000000";
 when read_ocr =>
 cmd <= "111010";
 ocr_reg_en <= '1';
 when set_blocklen =>
 cmd <= "010000";
 cmd_arg <= x"00000200";
 when send_csd =>
 cmd <= "001001";
 read_dest <= dest_csd;

 when read_length =>
 cmd <= "010001";
 read_dest <= dest_length;

 when read_samples =>
 cmd <= "010001";
 cmd_arg <= std_logic_vector(resize(sector *
sector_multiplier, cmd_arg'length));
 read_dest <= dest_ram;

 when write_samples =>
 cmd <= "011000";
 cmd_arg <= std_logic_vector(resize(sector *
sector_multiplier, cmd_arg'length));
 read_dest <= dest_ram;

 when erase_wr_blk_start_addr =>
 cmd <= "100000";
 cmd_arg <= std_logic_vector(resize((sector +
ERASE_SECTORS) * sector_multiplier + ERASE_SECTORS, cmd_arg'length));
 when erase_wr_blk_end_addr =>
 cmd <= "100001";
 cmd_arg <= std_logic_vector(resize((sector +
ERASE_SECTORS - 1) * sector_multiplier, cmd_arg'length));
 when erase =>
 cmd <= "100110";

69

 when write_length =>
 cmd <= "011000";
 read_dest <= dest_length;

 when others => null;
 end case;
 end case;
 end process;

 state_update_proc: process(sclk) begin
 if rising_edge(sclk) then
 state <= next_state;

 end if;
 end process;

end behavior;

sd_cmd.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/14/2018 04:27:27 PM

-- Design Name:

-- Module Name: sd_cmd - behavior

-- Project Name: VoiceRecordr

-- Target Devices:

-- Tool Versions:

-- Description:

--

-- Dependencies: sd_send.vhd, sd_recv.vhd, down_counter.vhd

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

70

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_cmd is
 port(sclk: in std_logic;
 cmd: in std_logic_vector(5 downto 0);
 cmd_arg: in std_logic_vector(31 downto 0);
 cmd_start: in std_logic; -- assert to start command
 cmd_end: out std_logic;
 res_r1: out std_logic_vector(7 downto 0) := x"00"; -- r1
response (first byte of response)

 res_data: out std_logic_vector(31 downto 0) := x"00000000";
-- response data/card status

 data_index: out std_logic_vector(8 downto 0);
 data_in: in std_logic_vector(7 downto 0);
 data_out: out std_logic_vector(7 downto 0);
 data_out_en: out std_logic;
 error: out std_logic;
 sd_spi_sclk: out std_logic;
 sd_spi_mosi: out std_logic;
 sd_spi_miso: in std_logic;
 sd_spi_cs: out std_logic);
end sd_cmd;

architecture behavior of sd_cmd is

 constant CMD_LENGTH: integer := 7;
 constant CMD_INDEX_BITS: integer :=
integer(ceil(log2(real(CMD_LENGTH))));

 component down_counter is
 generic(bits: positive := 4);
 port(clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset

71

value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 component sd_send is
 generic(bits: positive := 8);
 port(clk: in std_logic;
 data: in std_logic_vector(bits - 1 downto 0); -- data to
send to card

 new_data: in std_logic; -- data is registered on rising
edge when asserted

 done: out std_logic; -- when asserted, the previously
registered data has been processed

 spi_mosi: out std_logic := '0';
 spi_cs: out std_logic := '1');
 end component;

 component sd_recv is
 generic(bits: positive := 8);
 port(clk: in std_logic;
 data: out std_logic_vector(bits - 1 downto 0); -- data
to send to card

 new_data: out std_logic; -- asserted when new data
available on next rising edge, cleared after get_data asserted

 spi_miso: in std_logic := '0');
 end component;

 type state_type is (idle,
 cmd_load, send_wait, -- send command
 res_wait, recv_wait, res_data_load, --
receive response

 data_token_wait, data_read_wait,

data_read_load, -- read data block

72

 data_token_load, data_write_load,

data_write_wait, data_response_wait, -- write data block
 busy_wait, done, sd_error);

 signal state: state_type := idle;
 signal next_state: state_type;

 type send_data_src_type is (src_cmd, src_data_in,
src_data_token);

 signal send_data_src: send_data_src_type;

 signal send_data: std_logic_vector(7 downto 0);
 signal send_done, send_new_data: std_logic;

 signal recv_data: std_logic_vector(7 downto 0);
 signal recv_data_block, recv_done: std_logic;

 -- Command type and argument registers
 signal cmd_reg: unsigned(cmd'range);
 signal cmd_arg_reg: std_logic_vector(cmd_arg'range);
 signal cmd_reg_en: std_logic;

 signal cmd_index_vec: std_logic_vector(CMD_INDEX_BITS - 1 downto
0);
 signal cmd_index: unsigned(cmd_index_vec'range);
 signal cmd_index_preset, cmd_index_inc, cmd_done: std_logic;
 signal cmd_data: std_logic_vector(55 downto 0);

 -- Response data
 signal res_max_index: std_logic_vector(3 downto 0);
 signal res_index_vec: std_logic_vector(res_max_index'range);
 signal res_index: unsigned(res_index_vec'range);
 signal res_index_preset, res_index_inc, res_r1_en, res_data_en,
res_done: std_logic;

 -- Data block
 signal data_index_reset, data_index_inc: std_logic;
 signal data_index_reg, data_index_max: unsigned(9 downto 0) :=
(others => '0');

73

begin

 sd_spi_sclk <= sclk;

 send: sd_send

 port map(clk => sclk,
 data => send_data,

 new_data => send_new_data,

 done => send_done,

 spi_mosi => sd_spi_mosi,

 spi_cs => sd_spi_cs);

 recv: sd_recv

 port map(clk => sclk,
 data => recv_data,

 new_data => recv_done,

 spi_miso => sd_spi_miso);

 cmd_index <= unsigned(cmd_index_vec);
 cmd_index_counter: down_counter

 generic map(bits => CMD_INDEX_BITS)
 port map(clk => sclk,
 k => std_logic_vector(to_unsigned(CMD_LENGTH - 1,
CMD_INDEX_BITS)),

 CE => cmd_index_inc,

 preset => cmd_index_preset,

 y => cmd_index_vec,

 TC => cmd_done);

 cmd_reg_update: process(sclk) begin
 if rising_edge(sclk) then
 if cmd_reg_en = '1' then
 cmd_reg <= unsigned(cmd);
 cmd_arg_reg <= cmd_arg;

 end if;
 end if;
 end process;

74

 cmd_data_proc: process(cmd_reg, cmd_arg_reg)
 variable crc: std_logic_vector(6 downto 0);
 begin
 -- Only CMD0 and CMD8 actually require CRC unless it is
explicitly

 -- enabled. Rather than calculate it, we use hardcoded values
assuming

 -- the argument will always be the same.
 if cmd_reg = 0 then
 -- arg is 0x00000000
 crc := "1001010";
 elsif cmd_reg = 8 then
 -- arg is 0x000001AA
 crc := "1000011";
 else
 crc := "0000000";
 end if;

 -- some cards apparently like having a 0xFF byte ahead of the
command (after CS is asserted)

 cmd_data <= x"FF" & "01" & std_logic_vector(cmd_reg) &
cmd_arg_reg & crc & "1";
 end process;

 send_data_proc: process(send_data_src, cmd_index, cmd_data,
data_index_reg, data_index_max, data_in)

 variable addr_low: integer;
 begin
 addr_low := to_integer(cmd_index) * 8;
 case send_data_src is
 when src_cmd => send_data <= cmd_data(addr_low + 7 downto
addr_low);

 when src_data_in =>
 if data_index_reg < data_index_max - 1 then
 send_data <= data_in;

 else
 -- last two bytes are a dummy CRC

75

 send_data <= x"00";
 end if;
 when src_data_token => send_data <= x"FE";
 end case;
 end process;

 res_max_index_proc: process(cmd_reg) begin
 -- calculate response length
 case to_integer(cmd_reg) is
 when 8 | 41 | 58 =>
 res_max_index <= x"3";
 when others =>
 res_max_index <= x"0";
 end case;
 end process;

 res_index <= unsigned(res_index_vec);
 res_index_counter: down_counter

 generic map(bits => res_index'length)
 port map(clk => sclk,
 k => res_max_index,

 CE => res_index_inc,

 preset => res_index_preset,

 y => res_index_vec,

 TC => res_done);

 res_r1_proc: process(sclk) begin
 if rising_edge(sclk) then
 if res_r1_en = '1' then
 res_r1 <= recv_data;

 end if;
 end if;
 end process;

 res_data_proc: process(sclk, res_index)
 variable addr_low: integer;
 begin
 addr_low := to_integer(res_index) * 8;

76

 if rising_edge(sclk) then
 if res_data_en = '1' then
 res_data(addr_low + 7 downto addr_low) <= recv_data;
 end if;
 end if;
 end process;

 data_index_max_proc: process(cmd_reg) begin
 case to_integer(cmd_reg) is
 when 17 | 18 | 24 | 25 => data_index_max <= "1000000001";
-- 513 (512 bytes + CRC)

 when 9 | 10 => data_index_max <= "0000010001"; -- 17 (16
bytes + CRC)

 when others => data_index_max <= (others => '0');
 end case;
 end process;

 data_index_counter: process(sclk, data_index_reset,
data_index_inc) begin
 if rising_edge(sclk) then
 if data_index_reset = '1' then
 data_index_reg <= (others => '0');
 elsif data_index_inc = '1' then
 data_index_reg <= data_index_reg + 1;
 end if;
 end if;
 end process;

 -- Truncate index register and send it to output. This will wrap
around when

 -- it reaches the CRC (which the user doesn't care about), but
data_out_en

 -- will not be asserted, so users should ignore it.
 data_index <= std_logic_vector(data_index_reg(data_index'range));
 -- send received data directly to data_out
 -- should only be assumed to be valid when data_out_en is
asserted

 data_out <= recv_data;

77

 next_state_proc: process(state, cmd_reg, cmd_start, cmd_done,
send_done, recv_data, recv_done, res_done, data_index_reg,

data_index_max) begin
 next_state <= state;

 case state is
 when idle =>
 if cmd_start = '1' then
 next_state <= cmd_load;

 end if;
 when cmd_load =>
 if cmd_done = '1' then
 next_state <= res_wait;

 else
 next_state <= send_wait;

 end if;
 when send_wait =>
 if send_done = '1' then
 next_state <= cmd_load;

 end if;
 when res_wait =>
 if recv_data /= x"FF" then
 -- ignore idle state bit in determining if there
was an error

 if (recv_data and x"FE") = x"00" then
 next_state <= recv_wait;

 else
 next_state <= sd_error;

 end if;
 end if;
 when recv_wait =>
 if recv_done = '1' then
 next_state <= res_data_load;

 end if;
 when res_data_load =>
 if res_done = '1' then
 case to_integer(cmd_reg) is
 -- commands that have data block

78

 when 9 | 10 | 17 => next_state <=
data_token_wait;

 when 24 => next_state <= data_token_load;
 -- responses possibly have a busy signal
after them

 when others => next_state <= busy_wait;
 end case;
 else
 next_state <= recv_wait;

 end if;
 when data_token_wait =>
 if recv_data = x"FE" then
 next_state <= data_read_wait;

 end if;
 when data_read_wait =>
 if recv_done = '1' then
 next_state <= data_read_load;

 end if;
 when data_read_load =>
 if data_index_reg = data_index_max then
 next_state <= done;

 else
 next_state <= data_read_wait;

 end if;
 when data_token_load => next_state <= data_write_wait;
 when data_write_wait =>
 if send_done = '1' then
 next_state <= data_write_load;

 end if;
 when data_write_load =>
 if data_index_reg = data_index_max then
 next_state <= data_response_wait;

 else
 next_state <= data_write_wait;

 end if;
 when data_response_wait =>
 if recv_data(4 downto 0) = "00101" then
 -- correct response, wait for busy signal to end

79

 next_state <= busy_wait;

 elsif recv_data /= x"FF" then
 -- got response, but it was not what was expected
 next_state <= sd_error;

 end if;
 when busy_wait =>
 if recv_data = x"FF" then
 next_state <= done;

 end if;
 when done => next_state <= idle;
 when sd_error => next_state <= idle;
 end case;
 end process;

 output_proc: process(state, data_index_reg, data_index_max) begin
 cmd_reg_en <= '0';
 cmd_index_preset <= '0';
 cmd_index_inc <= '0';
 send_new_data <= '0';
 res_index_preset <= '0';
 res_index_inc <= '0';
 res_r1_en <= '0';
 res_data_en <= '0';
 data_index_reset <= '0';
 data_index_inc <= '0';
 data_out_en <= '0';
 send_data_src <= src_cmd;

 cmd_end <= '0';
 error <= '0';

 case state is
 when idle =>
 cmd_reg_en <= '1';
 cmd_index_preset <= '1';
 when cmd_load =>
 cmd_index_inc <= '1';
 send_new_data <= '1';
 when send_wait => null;

80

 when res_wait =>
 res_index_preset <= '1';
 res_r1_en <= '1';
 when recv_wait => null;
 when res_data_load =>
 res_index_inc <= '1';
 res_data_en <= '1';
 when data_token_wait =>
 data_index_reset <= '1';
 when data_read_wait => null;
 when data_read_load =>
 data_index_inc <= '1';
 -- only enable output when we have not yet reached
the CRC

 if data_index_reg <= data_index_max - 2 then
 data_out_en <= '1';
 end if;
 when data_token_load =>
 data_index_reset <= '1';
 send_data_src <= src_data_token;

 send_new_data <= '1';
 when data_write_wait => null;
 when data_write_load =>
 data_index_inc <= '1';
 send_new_data <= '1';
 send_data_src <= src_data_in;

 when data_response_wait => null;
 when busy_wait => null;
 when done => cmd_end <= '1';
 when sd_error =>
 error <= '1';
 cmd_end <= '1';
 end case;
 end process;

 state_update_proc: process(sclk) begin
 if rising_edge(sclk) then
 state <= next_state;

81

 end if;
 end process;

end behavior;

sd_send.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/13/2018 08:04:27 PM

-- Design Name:

-- Module Name: sd_send - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_send is
 generic(bits: positive := 8);
 port(clk: in std_logic;

82

 data: in std_logic_vector(bits - 1 downto 0); -- data to
send to card

 new_data: in std_logic; -- data is registered on rising edge
when asserted

 done: out std_logic; -- when asserted, the previously
registered data has been processed

 spi_mosi: out std_logic;
 spi_cs: out std_logic := '1');
end sd_send;

architecture behavior of sd_send is
 -- number of bits required to represent the bits parameter
 constant BITS_BITS: positive := integer(ceil(log2(real(bits))));

 component down_counter is
 generic(bits: positive := 4);
 port(clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 signal data_reg, shift_reg: std_logic_vector(bits - 1 downto 0)
:= (others => '1');

 -- asserted when the last bit is shifted
 signal last_bit: std_logic;

 -- asserted when data has arrived but has not been moved to shift
register

 signal new_data_reg: std_logic := '0';
begin

83

 spi_mosi <= shift_reg(bits - 1);
 done <= last_bit;

 process(clk) begin
 if falling_edge(clk) then
 -- shift or move data from data_reg
 if new_data_reg = '1' and last_bit = '1' then
 shift_reg <= data_reg;

 new_data_reg <= '0';
 -- assert CS when starting to transfer
 -- CS is never deasserted, because all the SD cards I
have

 -- tested do not require it, although some cards
supposedly do

 -- require it before each command. The CS signal is
used to

 -- frame the start of a byte, and the framing is
maintained as

 -- long as the clock does not glitch
 spi_cs <= '0';
 else
 shift_reg <= shift_reg(bits - 2 downto 0) & '1';
 end if;

 -- copy data input into register
 if new_data = '1' then
 data_reg <= data;

 new_data_reg <= '1';
 end if;
 end if;
 end process;

 shift_counter: down_counter

 generic map(bits => BITS_BITS)
 port map(clk => clk,
 k => std_logic_vector(to_unsigned(bits - 1,
BITS_BITS)),

 TC => last_bit);

84

end behavior;

sd_recv.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/13/2018 08:04:27 PM

-- Design Name:

-- Module Name: sd_send - behavior

-- Project Name: VoiceRecorder

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

entity sd_recv is
 generic(bits: positive := 8);
 port(clk: in std_logic;
 data: out std_logic_vector(bits - 1 downto 0); -- data to
send to card

85

 new_data: out std_logic; -- asserted when new data available
on next rising edge, cleared after get_data asserted

 spi_miso: in std_logic := '0');
end sd_recv;

architecture behavior of sd_recv is
 -- number of bits required to represent bits - 1
 constant BITS_BITS: positive := integer(ceil(log2(real(bits))));

 component down_counter is
 generic(bits: positive := 4);
 port(clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 signal shift_reg: std_logic_vector(bits - 1 downto 0) := (others
=> '1');

 -- asserted when the last bit is shifted
 signal last_bit: std_logic;
begin

 new_data <= last_bit;

 process(clk) begin
 if rising_edge(clk) then
 -- start shifting
 if last_bit = '1' then
 data <= shift_reg;

 end if;

86

 shift_reg <= shift_reg(bits - 2 downto 0) & spi_miso;
 end if;
 end process;

 shift_counter: down_counter

 generic map(bits => BITS_BITS)
 port map(clk => clk,
 k => std_logic_vector(to_unsigned(bits - 1,
BITS_BITS)),

 TC => last_bit);

end behavior;

down_counter.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 07/23/2018 10:04:40 PM

-- Design Name:

-- Module Name: down_counter - behavior

-- Project Name: down_counter

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description: A generic counter implementation that only counts

down.

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

87

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity down_counter is
 generic(bits: positive := 4);
 port (clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset value
 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the counter
to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
end down_counter;

architecture behavior of down_counter is
 signal uy: unsigned(y'range) := (others => '0');
begin

 y <= std_logic_vector(uy);

 TC <= '1' when uy = 0 else '0';

 process(clk) begin
 if rising_edge(clk) then
 if preset = '1' then
 uy <= unsigned(k);
 elsif CE = '1' then
 -- wrap around to k
 if uy = 0 then
 uy <= unsigned(k);
 else
 uy <= uy - 1;
 end if;
 end if;
 end if;
 end process;
end behavior;

88

clock_divider.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/11/2018 08:38:05 PM

-- Design Name:

-- Module Name: clock_divider - behavior

-- Project Name:

-- Target Devices: Artix 7 - Basys 3

-- Tool Versions:

-- Description:

--

-- Dependencies: down_counter.vhd

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.math_real.all;

library UNISIM;
use UNISIM.VComponents.all;

entity clock_divider is
 generic(divider: integer);
 port(mclk: in std_logic;
 dclk: out std_logic);
end clock_divider;

89

architecture behavior of clock_divider is

 constant COUNTER_VALUE: integer := divider / 2 - 1;
 constant COUNTER_BITS: integer :=
integer(ceil(log2(real(COUNTER_VALUE + 1))));
 signal dclk_unbuf: std_logic := '0'; -- unbuffered clock
 signal dclk_toggle: std_logic;

 component down_counter is
 generic(bits: positive := 4);
 port (clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;
begin

 assert (COUNTER_VALUE + 1) * 2 = divider report "Divider must be
a multiple of two";

 counter: down_counter

 generic map(COUNTER_BITS)
 port map(clk => mclk,
 k => std_logic_vector(to_unsigned(COUNTER_VALUE,
COUNTER_BITS)),

 TC => dclk_toggle);

 process(mclk) begin
 if rising_edge(mclk) then
 if dclk_toggle = '1' then
 dclk_unbuf <= not(dclk_unbuf);
 end if;
 end if;

90

 end process;

 -- The BUFG component puts the signal onto the FPGA clocking
network

 dclk_buffer: BUFG

 port map(I => dclk_unbuf,
 O => dclk);

end behavior;

sync.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/12/2018 10:21:29 PM

-- Design Name:

-- Module Name: sync - behavior

-- Project Name: VoiceRecorder

-- Target Devices:

-- Tool Versions:

-- Description: Dual flop synchronizer

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.math_real.all;
use IEEE.numeric_std.all;

91

entity sync is
 port(clk: in std_logic;
 input: in std_logic;
 output: out std_logic);
end sync;

architecture behavior of sync is
 signal sync_1: std_logic := '0';
 signal sync_2: std_logic := '0';
begin

 -- synchronization
 sync_proc: process(clk) begin
 if rising_edge(clk) then
 sync_1 <= input;

 sync_2 <= sync_1;

 end if;
 end process;

 output <= sync_2;

end behavior;

button.vhd

-- Company: ENGS 31, 18X

-- Engineer: Ben Wolsieffer

--

-- Create Date: 08/12/2018 10:21:29 PM

-- Design Name:

-- Module Name: button - behavior

-- Project Name:

-- Target Devices:

-- Tool Versions:

-- Description: Button synchronizer, debouncer and monopulser

92

--

-- Dependencies: down_counter.vhd

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.math_real.all;
use IEEE.numeric_std.all;

entity button is
 generic(count: positive := 10000);
 port(clk: in std_logic;
 input: in std_logic;
 output: out std_logic);
end button;

architecture behavior of button is
 constant DEBOUNCE_BITS: positive := integer(ceil(log2(real(count
+ 1))));

 component sync is
 port(clk: in std_logic;
 input: in std_logic;
 output: out std_logic);
 end component;

 component down_counter is
 generic(bits: positive := 4);
 port (clk: in std_logic;
 k: in std_logic_vector(bits - 1 downto 0); -- preset
value

93

 CE: in std_logic := '1'; -- count enable
 preset: in std_logic := '0'; -- assert to set the
counter to k

 y: out std_logic_vector(bits - 1 downto 0); -- counter
output

 TC: out std_logic); -- terminal count
 end component;

 -- synchronization
 signal sync_out: std_logic;

 -- debouncing
 signal debounce_output: std_logic := '0';
 signal not_changing: std_logic;
 signal change_trigger: std_logic;

 -- monopulsing
 signal mp_reg: std_logic_vector(1 downto 0) := "00";
begin

 -- synchronization
 sync_map: sync

 port map(clk => clk,
 input => input,

 output => sync_out);

 -- debouncing
 not_changing <= '1' when sync_out = debounce_output else '0';
 debounce_counter: down_counter

 generic map(bits => DEBOUNCE_BITS)
 port map(clk => clk,
 k => std_logic_vector(to_unsigned(count,
DEBOUNCE_BITS)),

 preset => not_changing,

 TC => change_trigger);

 process(clk) begin
 if rising_edge(clk) then

94

 if change_trigger = '1' then
 debounce_output <= sync_out;

 end if;
 end if;
 end process;

 -- monopulsing
 monopulser: process(clk, mp_reg, debounce_output)
 begin
 if rising_edge(clk) then
 mp_reg <= debounce_output & mp_reg(1);
 end if;

 output <= mp_reg(1) and not(mp_reg(0));
 end process monopulser;

end behavior;

VoiceRecorder.xdc

Constraint file for the voice recorder

Clock signal

#Bank = 34, Pin name = CLK, Sch name = CLK100MHZ

set_property PACKAGE_PIN W5 [get_ports mclk]
set_property IOSTANDARD LVCMOS33 [get_ports mclk]
create_clock -period 20.000 -name sys_clk_pin -waveform {0.000
10.000} -add [get_ports mclk]

LEDs

set_property PACKAGE_PIN U16 [get_ports {record_led}]
set_property IOSTANDARD LVCMOS33 [get_ports {record_led}]
set_property PACKAGE_PIN E19 [get_ports {play_led}]
set_property IOSTANDARD LVCMOS33 [get_ports {play_led}]
set_property PACKAGE_PIN U19 [get_ports {f_play_led}]
set_property IOSTANDARD LVCMOS33 [get_ports {f_play_led}]
set_property PACKAGE_PIN V19 [get_ports {s_play_led}]

95

set_property IOSTANDARD LVCMOS33 [get_ports {s_play_led}]
set_property PACKAGE_PIN W18 [get_ports {data_leds[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[0]}]
set_property PACKAGE_PIN U15 [get_ports {data_leds[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[1]}]
set_property PACKAGE_PIN U14 [get_ports {data_leds[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[2]}]
set_property PACKAGE_PIN V14 [get_ports {data_leds[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[3]}]
set_property PACKAGE_PIN V13 [get_ports {data_leds[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[4]}]
set_property PACKAGE_PIN V3 [get_ports {data_leds[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[5]}]
set_property PACKAGE_PIN W3 [get_ports {data_leds[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[6]}]
set_property PACKAGE_PIN U3 [get_ports {data_leds[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[7]}]
set_property PACKAGE_PIN P3 [get_ports {data_leds[8]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[8]}]
set_property PACKAGE_PIN N3 [get_ports {data_leds[9]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[9]}]
set_property PACKAGE_PIN P1 [get_ports {data_leds[10]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[10]}]
set_property PACKAGE_PIN L1 [get_ports {data_leds[11]}]
set_property IOSTANDARD LVCMOS33 [get_ports {data_leds[11]}]

#Buttons

##Bank = 14, Pin name = , Sch

name = BTNU

set_property PACKAGE_PIN T18 [get_ports {play_btn}]
set_property IOSTANDARD LVCMOS33 [get_ports {play_btn}]
#Bank = 14, Pin name = , Sch name = BTNL

set_property PACKAGE_PIN W19 [get_ports {record_btn}]
set_property IOSTANDARD LVCMOS33 [get_ports {record_btn}]
##Bank = 14, Pin name = ,

Sch name = BTNR

set_property PACKAGE_PIN T17 [get_ports {f_play_btn}]
set_property IOSTANDARD LVCMOS33 [get_ports {f_play_btn}]

96

##Bank = 14, Pin name = , Sch

name = BTND

set_property PACKAGE_PIN U17 [get_ports {s_play_btn}]
set_property IOSTANDARD LVCMOS33 [get_ports {s_play_btn}]

##Pmod Header JA

##Bank = 15, Pin name = IO_L1N_T0_AD0N_15, Sch

name = JA1

set_property PACKAGE_PIN J1 [get_ports {ad_spi_cs}]
set_property IOSTANDARD LVCMOS33 [get_ports {ad_spi_cs}]
##Bank = 15, Pin name = IO_L16N_T2_A27_15, Sch

name = JA3

set_property PACKAGE_PIN J2 [get_ports {ad_spi_sdata}]
set_property IOSTANDARD LVCMOS33 [get_ports {ad_spi_sdata}]
##Bank = 15, Pin name = IO_L16P_T2_A28_15, Sch

name = JA4

set_property PACKAGE_PIN G2 [get_ports {ad_spi_sclk}]
set_property IOSTANDARD LVCMOS33 [get_ports {ad_spi_sclk}]

##Pmod Header JB

#Bank = 15, Pin name = IO_L15N_T2_DQS_ADV_B_15, Sch

name = JB1

set_property PACKAGE_PIN A14 [get_ports {sd_spi_cs}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_spi_cs}]
###Bank = 14, Pin name = IO_L13P_T2_MRCC_14, Sch

name = JB2

set_property PACKAGE_PIN A16 [get_ports {sd_spi_mosi}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_spi_mosi}]
###Bank = 14, Pin name = IO_L21N_T3_DQS_A06_D22_14, Sch

name = JB3

set_property PACKAGE_PIN B15 [get_ports {sd_spi_miso}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_spi_miso}]
###Bank = CONFIG, Pin name = IO_L16P_T2_CSI_B_14, Sch name

= JB4

set_property PACKAGE_PIN B16 [get_ports {sd_spi_sclk}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_spi_sclk}]

97

##Bank = 14, Pin name = IO_L24P_T3_A01_D17_14, Sch

name = JB9

set_property PACKAGE_PIN C15 [get_ports {sd_cd}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_cd}]
##Bank = 14, Pin name = IO_L19N_T3_A09_D25_VREF_14, Sch

name = JB10

set_property PACKAGE_PIN C16 [get_ports {sd_wp}]
set_property IOSTANDARD LVCMOS33 [get_ports {sd_wp}]

##Pmod Header JXADC

##Bank = 15, Pin name = IO_L9P_T1_DQS_AD3P_15, Sch

name = XADC1_P -> XA1_P

set_property PACKAGE_PIN J3 [get_ports {da_spi_cs}]
set_property IOSTANDARD LVCMOS33 [get_ports {da_spi_cs}]
##Bank = 15, Pin name = IO_L8P_T1_AD10P_15, Sch

name = XADC2_P -> XA2_P

set_property PACKAGE_PIN L3 [get_ports {da_spi_sdata}]
set_property IOSTANDARD LVCMOS33 [get_ports {da_spi_sdata}]
##Bank = 15, Pin name = IO_L10P_T1_AD11P_15,

Sch name = XADC4_P -> XA4_P

set_property PACKAGE_PIN N2 [get_ports {da_spi_sclk}]
set_property IOSTANDARD LVCMOS33 [get_ports {da_spi_sclk}]

set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design]
set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]
set_property CONFIG_MODE SPIx4 [current_design]

set_property BITSTREAM.CONFIG.CONFIGRATE 33 [current_design]

set_property CONFIG_VOLTAGE 3.3 [current_design]
set_property CFGBVS VCCO [current_design]

98

Appendix F - Resource utilization

Table F1. Slice Logic

Site Type Used Fixed Available Util%

Slice LUTs 935 0 20800 4.50

LUT as Logic 935 0 20800 4.50

LUT as Memory 0 0 9600 0.00

Slice Registers 425 0 41600 1.02

Register as Flip Flop 425 0 41600 1.02

Register as Latch 0 0 41600 0.00

F7 Muxes 75 0 16300 0.46

F8 Muxes 0 0 8150 0.00

Table F2. Memory

Site Type Used Fixed Available Util%

Block RAM Tile 44 0 50 88.00

RAMB36/FIFO* 44 0 50 88.00

RAMB36E1 only 44

RAMB18 0 0 100 0.00

99

Table F3. Primitives

Ref Name Used Functional Category

FDRE 412 Flop & Latch

LUT6 405 LUT

LUT4 284 LUT

LUT5 219 LUT

LUT3 138 LUT

CARRY4 82 CarryLogic

MUXF7 75 MuxFx

LUT2 61 LUT

RAMB36E1 44 Block Memory

LUT1 40 LUT

OBUF 24 IO

FDSE 9 Flop & Latch

IBUF 8 IO

FDCE 4 Flop & Latch

BUFG 2 Clock

100

Appendix G - Residual warnings

[Synth 8-3331] design sd_driver has unconnected port sd_cd
[Synth 8-3331] design voice_recorder has unconnected port sd_cd

These warnings occur because the SD card detect pin is mapped in the constraint file and the top
level file, but was never used due to time constraints.

[Synth 8-3936] Found unconnected internal register 'ocr_reg_reg' and
it is trimmed from '32' to '31' bits. ["sd/sd_driver.vhd":195]
[Synth 8-3332] Sequential element (sd_cmd_map/res_data_reg[31]) is
unused and will be removed from module sd_driver.
[Synth 8-3332] Sequential element (sd_cmd_map/res_data_reg[29]) is
unused and will be removed from module sd_driver.
... elided ...
[Synth 8-3332] Sequential element (sd_cmd_map/res_data_reg[13]) is
unused and will be removed from module sd_driver.
[Synth 8-3332] Sequential element (sd_cmd_map/res_data_reg[12]) is
unused and will be removed from module sd_driver.

These warnings occur because the entire SD Operating Conditions Register is saved to a register,
but the code only uses one bit from it.

[Synth 8-3332] Sequential element (csd_reg_reg[125]) is unused and
will be removed from module sd_driver.
[Synth 8-3332] Sequential element (csd_reg_reg[124]) is unused and
will be removed from module sd_driver.
... elided ...
[Synth 8-3332] Sequential element (csd_reg_reg[19]) is unused and will
be removed from module sd_driver.
[Synth 8-3332] Sequential element (csd_reg_reg[18]) is unused and will
be removed from module sd_driver.

These warnings occur because the entire SD Card Specific Data register is saved, but only a
portion of it is used.

101

Appendix H - Memory map

The block RAM on the FPGA was used as a circular buffer that stored audio samples as they

were transferred between the audio controller and SD driver. Each element was 12 bits wide, the

size of a sample, and the size of the RAM was 131,072 (217), the largest power of two that fits in

the available block RAM.

102

Appendix I - Simulation waveforms 3

Figure I1. Pmod AD1 simulation waveform

Figure I2. Pmod DA2 simulation waveform

3 To see enlarged versions of these diagrams, click on the image.

https://www.benwolsieffer.com/engs31/pmod_ad1_tb_simulation.png
https://www.benwolsieffer.com/engs31/pmod_da2_tb_simulation.png

103

Figure I3. Audio controller simulation waveform

Figure I4. UI controller simulation waveform

Figure I5. Simulation waveform for communication between sd_send and sd_recv components.

https://www.benwolsieffer.com/engs31/audio_controller_tb_simulation.png
https://www.benwolsieffer.com/engs31/UI_controller_tb_simulation.png
https://www.benwolsieffer.com/engs31/sd_send_recv_tb.png

104

Figure I6. SD command controller simulation waveform

Figure I7. SD driver simulation waveform

Figure I8. Button synchronizer, debouncer and monopulser simulation waveform

https://www.benwolsieffer.com/engs31/sd_cmd_tb.png
https://www.benwolsieffer.com/engs31/sd_driver_tb_simulation.png
https://www.benwolsieffer.com/engs31/button_tb_simulation.png

105

Figure I9. Clock divider simulation waveform

https://www.benwolsieffer.com/engs31/clock_divider_tb_simulation.png

106

Appendix J - Computer program

Python script for writing an audio file to an SD card in the format expected by the voice
recorder.

#!/usr/bin/env python3

import sys
import soundfile as sf
import struct
import numpy as np

SECTOR_SIZE = 512
DATA_OFFSET = 8192 * SECTOR_SIZE

def main():
 if len(sys.argv) < 3:
 print("usage: {} audio_file sd_dev".format(sys.argv[0]),
file=sys.stderr)

 sys.exit(1)

 audio_file_name = sys.argv[1]
 sd_name = sys.argv[2]

 with sf.SoundFile(audio_file_name, 'r') as f:
 print(f.format_info)

 print(f.extra_info)

 print(f.subtype_info)

 assert f.samplerate == 44100
 assert f.subtype == 'PCM_16'

 with open(sd_name, 'rb+') as sd:
 sd.seek(0)
 # Index of end of data (relative to offset)
 sd.write(struct.pack('<I', len(f) - 1))
 sd.seek(DATA_OFFSET)

107

 while f.tell() < len(f):
 data = f.read(frames=4096, dtype='int16')
 mono_data = np.mean(data, axis=1).astype(np.int32)
 unsigned_data = (mono_data + 32768).astype(np.uint16)
 for sample in unsigned_data:
 sd.write(struct.pack('<H', sample))

if __name__ == "__main__":
 main()

